Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2009-2018 Sylvie Boldo
Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Roundings: properties and/or functions

Require Import Raux Defs.

Section RND_prop.

Open Scope R_scope.

Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_DN_pt F x (rnd x).

Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_UP_pt F x (rnd x).

Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_ZR_pt F x (rnd x).

Definition Rnd_N (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_N_pt F x (rnd x).

Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_NG_pt F P x (rnd x).

Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_NA_pt F x (rnd x).

Definition Rnd_N0 (F : R -> Prop) (rnd : R -> R) :=
  forall x : R, Rnd_N0_pt F x (rnd x).


forall rnd : R -> R -> Prop, round_pred rnd -> forall x : R, {f : R | rnd x f}

forall rnd : R -> R -> Prop, round_pred rnd -> forall x : R, {f : R | rnd x f}
rnd:R -> R -> Prop
H1:round_pred_total rnd
H2:round_pred_monotone rnd
x:R

{f : R | rnd x f}
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd

{f : R | rnd x f}
(* . *)
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd

bound (rnd x)
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
{f : R | rnd x f}
rnd:R -> R -> Prop
x, f:R
H1:rnd x f
H2:round_pred_monotone rnd

bound (rnd x)
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
{f : R | rnd x f}
rnd:R -> R -> Prop
x, f:R
H1:rnd x f
H2:round_pred_monotone rnd

is_upper_bound (rnd x) f
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
{f : R | rnd x f}
rnd:R -> R -> Prop
x, f:R
H1:rnd x f
H2:round_pred_monotone rnd
g:R
Hg:rnd x g

g <= f
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
{f : R | rnd x f}
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)

{f : R | rnd x f}
(* . *)
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)

rnd x (proj1_sig (completeness (rnd x) H3 H1))
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

rnd x (proj1_sig (exist (fun m : R => is_lub (rnd x) m) f1 (conj H4 H5)))
rnd:R -> R -> Prop
x:R
H1:exists f : R, rnd x f
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

f1 = f2
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2
rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

f1 <= f2
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
f2 <= f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2
rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

is_upper_bound (rnd x) f2
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
f2 <= f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2
rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
f3:R
H:rnd x f3

f3 <= f2
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
f2 <= f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2
rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b

f2 <= f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2
rnd x f1
rnd:R -> R -> Prop
x, f2:R
H1:rnd x f2
H2:round_pred_monotone rnd
H3:bound (rnd x)
f1:R
H4:is_upper_bound (rnd x) f1
H5:forall b : R, is_upper_bound (rnd x) b -> f1 <= b
H:f1 = f2

rnd x f1
now rewrite H. Qed.

forall rnd : R -> R -> Prop, round_pred rnd -> {f : R -> R | forall x : R, rnd x (f x)}

forall rnd : R -> R -> Prop, round_pred rnd -> {f : R -> R | forall x : R, rnd x (f x)}
rnd:R -> R -> Prop
H:round_pred rnd

{f : R -> R | forall x : R, rnd x (f x)}
rnd:R -> R -> Prop
H:round_pred rnd

forall x : R, rnd x (proj1_sig (round_val_of_pred rnd H x))
rnd:R -> R -> Prop
H:round_pred rnd
x:R

rnd x (proj1_sig (round_val_of_pred rnd H x))
now destruct round_val_of_pred as (f, H1). Qed.

forall rnd : R -> R -> Prop, round_pred_monotone rnd -> forall x f1 f2 : R, rnd x f1 -> rnd x f2 -> f1 = f2

forall rnd : R -> R -> Prop, round_pred_monotone rnd -> forall x f1 f2 : R, rnd x f1 -> rnd x f2 -> f1 = f2
rnd:R -> R -> Prop
Hr:round_pred_monotone rnd
x, f1, f2:R
H1:rnd x f1
H2:rnd x f2

f1 = f2
rnd:R -> R -> Prop
Hr:round_pred_monotone rnd
x, f1, f2:R
H1:rnd x f1
H2:rnd x f2

f1 <= f2
rnd:R -> R -> Prop
Hr:round_pred_monotone rnd
x, f1, f2:R
H1:rnd x f1
H2:rnd x f2
f2 <= f1
rnd:R -> R -> Prop
Hr:round_pred_monotone rnd
x, f1, f2:R
H1:rnd x f1
H2:rnd x f2

f2 <= f1
now apply Hr with (3 := Rle_refl x). Qed.

forall F : R -> Prop, round_pred_monotone (Rnd_DN_pt F)

forall F : R -> Prop, round_pred_monotone (Rnd_DN_pt F)
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:f <= x
Hy1:F g
Hy2:forall g0 : R, F g0 -> g0 <= y -> g0 <= g
Hxy:x <= y

f <= g
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:f <= x
Hy1:F g
Hy2:forall g0 : R, F g0 -> g0 <= y -> g0 <= g
Hxy:x <= y

F f
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:f <= x
Hy1:F g
Hy2:forall g0 : R, F g0 -> g0 <= y -> g0 <= g
Hxy:x <= y
f <= y
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:f <= x
Hy1:F g
Hy2:forall g0 : R, F g0 -> g0 <= y -> g0 <= g
Hxy:x <= y

f <= y
now apply Rle_trans with (2 := Hxy). Qed.

forall (F : R -> Prop) (x f1 f2 : R), Rnd_DN_pt F x f1 -> Rnd_DN_pt F x f2 -> f1 = f2

forall (F : R -> Prop) (x f1 f2 : R), Rnd_DN_pt F x f1 -> Rnd_DN_pt F x f2 -> f1 = f2
F:R -> Prop

forall x f1 f2 : R, Rnd_DN_pt F x f1 -> Rnd_DN_pt F x f2 -> f1 = f2
F:R -> Prop

round_pred_monotone (Rnd_DN_pt F)
apply Rnd_DN_pt_monotone. Qed.

forall (F : R -> Prop) (rnd1 rnd2 : R -> R), Rnd_DN F rnd1 -> Rnd_DN F rnd2 -> forall x : R, rnd1 x = rnd2 x

forall (F : R -> Prop) (rnd1 rnd2 : R -> R), Rnd_DN F rnd1 -> Rnd_DN F rnd2 -> forall x : R, rnd1 x = rnd2 x
F:R -> Prop
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_DN F rnd2
x:R

rnd1 x = rnd2 x
now eapply Rnd_DN_pt_unique. Qed.

forall F : R -> Prop, round_pred_monotone (Rnd_UP_pt F)

forall F : R -> Prop, round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:forall g0 : R, F g0 -> x <= g0 -> f <= g0
Hy1:F g
Hy2:y <= g
Hxy:x <= y

f <= g
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:forall g0 : R, F g0 -> x <= g0 -> f <= g0
Hy1:F g
Hy2:y <= g
Hxy:x <= y

F g
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:forall g0 : R, F g0 -> x <= g0 -> f <= g0
Hy1:F g
Hy2:y <= g
Hxy:x <= y
x <= g
F:R -> Prop
x, y, f, g:R
Hx1:F f
Hx2:forall g0 : R, F g0 -> x <= g0 -> f <= g0
Hy1:F g
Hy2:y <= g
Hxy:x <= y

x <= g
now apply Rle_trans with (1 := Hxy). Qed.

forall (F : R -> Prop) (x f1 f2 : R), Rnd_UP_pt F x f1 -> Rnd_UP_pt F x f2 -> f1 = f2

forall (F : R -> Prop) (x f1 f2 : R), Rnd_UP_pt F x f1 -> Rnd_UP_pt F x f2 -> f1 = f2
F:R -> Prop

forall x f1 f2 : R, Rnd_UP_pt F x f1 -> Rnd_UP_pt F x f2 -> f1 = f2
F:R -> Prop

round_pred_monotone (Rnd_UP_pt F)
apply Rnd_UP_pt_monotone. Qed.

forall (F : R -> Prop) (rnd1 rnd2 : R -> R), Rnd_UP F rnd1 -> Rnd_UP F rnd2 -> forall x : R, rnd1 x = rnd2 x

forall (F : R -> Prop) (rnd1 rnd2 : R -> R), Rnd_UP F rnd1 -> Rnd_UP F rnd2 -> forall x : R, rnd1 x = rnd2 x
F:R -> Prop
rnd1, rnd2:R -> R
H1:Rnd_UP F rnd1
H2:Rnd_UP F rnd2
x:R

rnd1 x = rnd2 x
now eapply Rnd_UP_pt_unique. Qed.

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_DN_pt F x f -> Rnd_UP_pt F (- x) (- f)

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_DN_pt F x f -> Rnd_UP_pt F (- x) (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

Rnd_UP_pt F (- x) (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

F (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
- x <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
forall g : R, F g -> - x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

F f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
- x <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
forall g : R, F g -> - x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

- x <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
forall g : R, F g -> - x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

f <= x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
forall g : R, F g -> - x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f

forall g : R, F g -> - x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g

- x <= g -> - f <= g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g

- x <= - - g -> - f <= - - g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g
Hxg:- x <= - - g

- f <= - - g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g
Hxg:- x <= - - g

- g <= f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g
Hxg:- x <= - - g

F (- g)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g
Hxg:- x <= - - g
- g <= x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_DN_pt F x f
g:R
Hg:F g
Hxg:- x <= - - g

- g <= x
now apply Ropp_le_cancel. Qed.

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_UP_pt F x f -> Rnd_DN_pt F (- x) (- f)

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_UP_pt F x f -> Rnd_DN_pt F (- x) (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

Rnd_DN_pt F (- x) (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

F (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
- f <= - x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
forall g : R, F g -> g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

F f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
- f <= - x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
forall g : R, F g -> g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

- f <= - x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
forall g : R, F g -> g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

x <= f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
forall g : R, F g -> g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f

forall g : R, F g -> g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g

g <= - x -> g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g

- - g <= - x -> - - g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g
Hxg:- - g <= - x

- - g <= - f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g
Hxg:- - g <= - x

f <= - g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g
Hxg:- - g <= - x

F (- g)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g
Hxg:- - g <= - x
x <= - g
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H:Rnd_UP_pt F x f
g:R
Hg:F g
Hxg:- - g <= - x

x <= - g
now apply Ropp_le_cancel. Qed.

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall rnd1 rnd2 : R -> R, Rnd_DN F rnd1 -> Rnd_UP F rnd2 -> forall x : R, rnd1 (- x) = - rnd2 x

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall rnd1 rnd2 : R -> R, Rnd_DN F rnd1 -> Rnd_UP F rnd2 -> forall x : R, rnd1 (- x) = - rnd2 x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x:R

rnd1 (- x) = - rnd2 x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x:R

- - rnd1 (- x) = - rnd2 x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x:R

- rnd1 (- x) = rnd2 x
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x:R

Rnd_UP F (fun x0 : R => - rnd1 (- x0))
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x, y:R

Rnd_UP_pt F y (- rnd1 (- y))
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x, y:R

Rnd_UP_pt F (- - y) (- rnd1 (- y))
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x, y:R

forall x0 : R, F x0 -> F (- x0)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x, y:R
Rnd_DN_pt F (- y) (rnd1 (- y))
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
rnd1, rnd2:R -> R
H1:Rnd_DN F rnd1
H2:Rnd_UP F rnd2
x, y:R

Rnd_DN_pt F (- y) (rnd1 (- y))
apply H1. Qed.

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> forall f : R, F f -> f <= d \/ u <= f

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> forall f : R, F f -> f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f

f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:f <= x

f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:x < f
f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:f <= x

f <= d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:x < f
f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:x < f

f <= d \/ u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:x < f

u <= f
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
f:R
Hf:F f
H:x < f
H':x <= f

u <= f
now apply Hu. Qed.

forall (F : R -> Prop) (x : R), F x -> Rnd_DN_pt F x x

forall (F : R -> Prop) (x : R), F x -> Rnd_DN_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_DN_pt F x x
F:R -> Prop
x:R
Hx:F x

F x
F:R -> Prop
x:R
Hx:F x
x <= x
F:R -> Prop
x:R
Hx:F x
forall g : R, F g -> g <= x -> g <= x
F:R -> Prop
x:R
Hx:F x

x <= x
F:R -> Prop
x:R
Hx:F x
forall g : R, F g -> g <= x -> g <= x
F:R -> Prop
x:R
Hx:F x

forall g : R, F g -> g <= x -> g <= x
now intros. Qed.

forall (F : R -> Prop) (x f : R), Rnd_DN_pt F x f -> F x -> f = x

forall (F : R -> Prop) (x f : R), Rnd_DN_pt F x f -> F x -> f = x
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x

f = x
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x

f <= x
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x
x <= f
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x

x <= f
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x

F x
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x
x <= x
F:R -> Prop
x, f:R
Hx1:f <= x
Hx2:forall g : R, F g -> g <= x -> g <= f
Hx:F x

x <= x
apply Rle_refl. Qed.

forall (F : R -> Prop) (x : R), F x -> Rnd_UP_pt F x x

forall (F : R -> Prop) (x : R), F x -> Rnd_UP_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_UP_pt F x x
F:R -> Prop
x:R
Hx:F x

F x
F:R -> Prop
x:R
Hx:F x
x <= x
F:R -> Prop
x:R
Hx:F x
forall g : R, F g -> x <= g -> x <= g
F:R -> Prop
x:R
Hx:F x

x <= x
F:R -> Prop
x:R
Hx:F x
forall g : R, F g -> x <= g -> x <= g
F:R -> Prop
x:R
Hx:F x

forall g : R, F g -> x <= g -> x <= g
now intros. Qed.

forall (F : R -> Prop) (x f : R), Rnd_UP_pt F x f -> F x -> f = x

forall (F : R -> Prop) (x f : R), Rnd_UP_pt F x f -> F x -> f = x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x

f = x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x

f <= x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x
x <= f
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x

F x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x
x <= x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x
x <= f
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x

x <= x
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x
x <= f
F:R -> Prop
x, f:R
Hx1:x <= f
Hx2:forall g : R, F g -> x <= g -> f <= g
Hx:F x

x <= f
exact Hx1. Qed.

forall (F : R -> Prop) (x fd fu f : R), Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> F f -> fd <= f <= fu -> f = fd \/ f = fu

forall (F : R -> Prop) (x fd fu f : R), Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> F f -> fd <= f <= fu -> f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu

f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:x <= f

f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:f < x
f = fd
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:x <= f

fu <= f
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:f < x
f = fd
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:f < x

f = fd
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:f <= x

f = fd
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:F f
Hdf:fd <= f
Hfu:f <= fu
H:f <= x

f <= fd
now apply Hd. Qed.

forall (F : R -> Prop) (rnd : R -> R), Rnd_ZR F rnd -> forall x : R, Rabs (rnd x) <= Rabs x

forall (F : R -> Prop) (rnd : R -> R), Rnd_ZR F rnd -> forall x : R, Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R

Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R

F 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R

F (rnd 0)
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
rnd 0 = 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R

0 <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
rnd 0 = 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R

rnd 0 = 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)

rnd 0 = 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)

rnd 0 <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)
0 <= rnd 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)

0 <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)
0 <= rnd 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)

0 <= rnd 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H1:0 <= 0 -> Rnd_DN_pt F 0 (rnd 0)
H2:0 <= 0 -> Rnd_UP_pt F 0 (rnd 0)

0 <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0

Rabs (rnd x) <= Rabs x
(* . *)
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:0 <= x

Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x < 0
Rabs (rnd x) <= Rabs x
(* positive *)
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:0 <= x

Rabs (rnd x) <= x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x < 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:0 <= x

rnd x <= x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:0 <= x
0 <= rnd x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x < 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:0 <= x

0 <= rnd x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x < 0
Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x < 0

Rabs (rnd x) <= Rabs x
(* negative *)
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0

Rabs (rnd x) <= Rabs x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0

Rabs (rnd x) <= - x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0

- rnd x <= - x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0
rnd x <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0

x <= rnd x
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0
rnd x <= 0
F:R -> Prop
rnd:R -> R
H:Rnd_ZR F rnd
x:R
H0:F 0
H1:x <= 0

rnd x <= 0
now apply (proj2 (H x)). Qed.

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_ZR_pt F)

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0
f <= g
(* . *)
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x

0 <= y
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x
F f
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x
f <= y
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x

F f
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x
f <= y
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x

f <= y
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:0 <= x

f <= x
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x < 0

f <= g
(* . *)
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:0 <= y

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:0 <= y

f <= 0
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:0 <= y
0 <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:0 <= y

0 <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y < 0
f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y < 0

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0

f <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0

x <= 0
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0
F g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0
x <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0

F g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0
x <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0

x <= g
F:R -> Prop
F0:F 0
x, y, f, g:R
Hx1:0 <= x -> Rnd_DN_pt F x f
Hx2:x <= 0 -> Rnd_UP_pt F x f
Hy1:0 <= y -> Rnd_DN_pt F y g
Hy2:y <= 0 -> Rnd_UP_pt F y g
Hxy:x <= y
Hx:x <= 0
Hy:y <= 0

y <= g
now apply Hy2. Qed.

forall (F : R -> Prop) (x f : R), Rnd_N_pt F x f -> Rnd_DN_pt F x f \/ Rnd_UP_pt F x f

forall (F : R -> Prop) (x f : R), Rnd_N_pt F x f -> Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)

Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f

Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
(* . *)
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f

Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f

forall g : R, F g -> x <= g -> f <= g
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hxf:x <= f
g:R
Hg:F g
Hxg:x <= g

f <= g
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g

f <= g
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:f - x <= g - x
Hxf:x <= f
Hg:F g
Hxg:x <= g

f <= g
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:f - x <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g
0 <= f - x
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:f - x <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g

0 <= g - x
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g
0 <= f - x
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:x <= f
Hg:F g
Hxg:x <= g

0 <= f - x
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x

Rnd_DN_pt F x f \/ Rnd_UP_pt F x f
(* . *)
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x

Rnd_DN_pt F x f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x

f <= x
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
forall g : R, F g -> g <= x -> g <= f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hxf:f < x

forall g : R, F g -> g <= x -> g <= f
F:R -> Prop
x, f:R
Hf1:F f
Hf2:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hxf:f < x
g:R
Hg:F g
Hxg:g <= x

g <= f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

g <= f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= - (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

g <= f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
f - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= - (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

g - x <= f - x -> g <= f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
f - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= - (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
H:g - x <= f - x

g <= f
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
f - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:- (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

g - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x
f - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

f - x <= 0
F:R -> Prop
x, f:R
Hf1:F f
g:R
Hf2:Rabs (f - x) <= Rabs (g - x)
Hxf:f < x
Hg:F g
Hxg:g <= x

f - x < 0
now apply Rlt_minus. Qed.

forall (F : R -> Prop) (x fd fu f : R), Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> Rnd_N_pt F x f -> f = fd \/ f = fu

forall (F : R -> Prop) (x fd fu f : R), Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> Rnd_N_pt F x f -> f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f

f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_DN_pt F x f

f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_UP_pt F x f
f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_DN_pt F x f

f = fd
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_UP_pt F x f
f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_UP_pt F x f

f = fd \/ f = fu
F:R -> Prop
x, fd, fu, f:R
Hd:Rnd_DN_pt F x fd
Hu:Rnd_UP_pt F x fu
Hf:Rnd_N_pt F x f
H:Rnd_UP_pt F x f

f = fu
apply Rnd_UP_pt_unique with (1 := H) (2 := Hu). Qed.

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_N_pt F (- x) (- f) -> Rnd_N_pt F x f

forall F : R -> Prop, (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_N_pt F (- x) (- f) -> Rnd_N_pt F x f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)

Rnd_N_pt F x f
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)

Rnd_N_pt F x (- - f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)

F (- - f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)
forall g : R, F g -> Rabs (- - f - x) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)

F (- f)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)
forall g : R, F g -> Rabs (- - f - x) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g : R, F g -> Rabs (- f - - x) <= Rabs (g - - x)

forall g : R, F g -> Rabs (- - f - x) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

Rabs (- - f - x) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

Rabs (- (- f - - x)) <= Rabs (g - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

Rabs (- (- f - - x)) <= Rabs (- (- g - - x))
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

Rabs (- f - - x) <= Rabs (- g - - x)
F:R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
H1:F (- f)
H2:forall g0 : R, F g0 -> Rabs (- f - - x) <= Rabs (g0 - - x)
g:R
H3:F g

F (- g)
now apply HF. Qed.

forall (F : R -> Prop) (x y f g : R), Rnd_N_pt F x f -> Rnd_N_pt F y g -> x < y -> f <= g

forall (F : R -> Prop) (x y f g : R), Rnd_N_pt F x f -> Rnd_N_pt F y g -> x < y -> f <= g
F:R -> Prop
x, y, f, g:R
Hf:F f
Hx:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hg:F g
Hy:forall g0 : R, F g0 -> Rabs (g - y) <= Rabs (g0 - y)
Hxy:x < y

f <= g
F:R -> Prop
x, y, f, g:R
Hf:F f
Hx:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hg:F g
Hy:forall g0 : R, F g0 -> Rabs (g - y) <= Rabs (g0 - y)
Hxy:x < y

~ g < f
F:R -> Prop
x, y, f, g:R
Hf:F f
Hx:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hg:F g
Hy:forall g0 : R, F g0 -> Rabs (g - y) <= Rabs (g0 - y)
Hxy:x < y
Hgf:g < f

False
F:R -> Prop
x, y, f, g:R
Hf:F f
Hx:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hg:F g
Hy:forall g0 : R, F g0 -> Rabs (g - y) <= Rabs (g0 - y)
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)

False
F:R -> Prop
x, y, f, g:R
Hf:F f
Hx:forall g0 : R, F g0 -> Rabs (f - x) <= Rabs (g0 - x)
Hg:F g
Hy:forall g0 : R, F g0 -> Rabs (g - y) <= Rabs (g0 - y)
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
(* x <= g < f *)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

Rabs (g - x) < Rabs (f - x)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

g - x < f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g
0 <= g - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g
0 <= g - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

x <= f
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g
0 <= g - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

x < f
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g
0 <= g - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hxg:x <= g

0 <= g - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
(* g < f <= y *)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

Rabs (f - y) < Rabs (g - y)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

Rabs (f - y) < - (g - y)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

Rabs (f - y) < - (g - y)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

- (f - y) < - (g - y)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y
f - y <= 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

g - y < f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y
f - y <= 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hfy:f <= y

f - y <= 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f

False
(* g < x < y < f *)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

False
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

x - g + (f - y) < f - x + (y - g)
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

x - g + (f - y) - (f - x + (y - g)) < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

2 * x - 2 * y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

2 * x < 2 * y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

0 < 2
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
x < y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= x - g
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

x < y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:f - x <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

g - x < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

0 <= f - x
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

x <= f
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:y - g <= f - y
Hgx:g < x
Hgy:g < y
Hyf:y < f

x < f
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f

0 <= f - y
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:- (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f

y <= f
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f
g - y < 0
x, y, f, g:R
Hxy:x < y
Hgf:g < f
Hfgx:Rabs (f - x) <= Rabs (g - x)
Hgfy:Rabs (g - y) <= Rabs (f - y)
Hgx:g < x
Hgy:g < y
Hyf:y < f

g - y < 0
now apply Rlt_minus. Qed.

forall (F : R -> Prop) (x d u f1 f2 : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> x - d <> u - x -> Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2

forall (F : R -> Prop) (x d u f1 f2 : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> x - d <> u - x -> Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x

Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x

forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x

forall f1 f2 : R, Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 < f2 -> False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2

False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hd2:Rnd_DN_pt F x f2

False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hd2:Rnd_DN_pt F x f2

f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

x - d = u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

x - f1 = u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

x - f1 = f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

Rabs (x - f1) = f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

Rabs (x - f1) = Rabs (f2 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

Rabs (f1 - x) = Rabs (f2 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

Rabs (f1 - x) <= Rabs (f2 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
Rabs (f2 - x) <= Rabs (f1 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

F f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
Rabs (f2 - x) <= Rabs (f1 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

Rabs (f2 - x) <= Rabs (f1 - x)
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

F f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

0 <= f2 - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

x <= f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2
0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

0 <= x - f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hd1:Rnd_DN_pt F x f1
Hu2:Rnd_UP_pt F x f2

f1 <= x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2

False
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2

f2 <= f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2

f2 <= x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2
x <= f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hd2:Rnd_DN_pt F x f2

x <= f1
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2
False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2

False
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
f1, f2:R
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2
H12:f1 < f2
Hu1:Rnd_UP_pt F x f1
Hu2:Rnd_UP_pt F x f2

f2 = f1
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False

Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 = f2
F:R -> Prop
x, d, u, f1, f2:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hdu:x - d <> u - x
H:forall f0 f3 : R, Rnd_N_pt F x f0 -> Rnd_N_pt F x f3 -> f0 < f3 -> False
Hf1:Rnd_N_pt F x f1
Hf2:Rnd_N_pt F x f2

f1 = f2
now apply Rle_antisym ; apply Rnot_lt_le ; refine (H _ _ _ _). Qed.

forall (F : R -> Prop) (x : R), F x -> Rnd_N_pt F x x

forall (F : R -> Prop) (x : R), F x -> Rnd_N_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_N_pt F x x
F:R -> Prop
x:R
Hx:F x

F x
F:R -> Prop
x:R
Hx:F x
forall g : R, F g -> Rabs (x - x) <= Rabs (g - x)
F:R -> Prop
x:R
Hx:F x

forall g : R, F g -> Rabs (x - x) <= Rabs (g - x)
F:R -> Prop
x:R
Hx:F x
g:R

Rabs (x - x) <= Rabs (g - x)
F:R -> Prop
x:R
Hx:F x
g:R

Rabs (x + - x) <= Rabs (g - x)
F:R -> Prop
x:R
Hx:F x
g:R

0 <= Rabs (g - x)
apply Rabs_pos. Qed.

forall (F : R -> Prop) (x f : R), Rnd_N_pt F x f -> F x -> f = x

forall (F : R -> Prop) (x f : R), Rnd_N_pt F x f -> F x -> f = x
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x

f = x
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x

f - x = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x = 0

f - x = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
f - x = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

f - x = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs (f - x) = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs (f - x) <= 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
0 <= Rabs (f - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs (f - x) <= Rabs (x - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
Rabs (x - x) = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
0 <= Rabs (f - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs (x - x) = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
0 <= Rabs (f - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs (x + - x) = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
0 <= Rabs (f - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

Rabs 0 = 0
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0
0 <= Rabs (f - x)
F:R -> Prop
x, f:R
Hf:forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
Hx:F x
H:f - x <> 0

0 <= Rabs (f - x)
apply Rabs_pos. Qed.

forall F : R -> Prop, F 0 -> Rnd_N_pt F 0 0

forall F : R -> Prop, F 0 -> Rnd_N_pt F 0 0
F:R -> Prop
HF:F 0

Rnd_N_pt F 0 0
F:R -> Prop
HF:F 0

F 0
F:R -> Prop
HF:F 0
forall g : R, F g -> Rabs (0 - 0) <= Rabs (g - 0)
F:R -> Prop
HF:F 0

forall g : R, F g -> Rabs (0 - 0) <= Rabs (g - 0)
F:R -> Prop
HF:F 0
g:R

Rabs (0 - 0) <= Rabs (g - 0)
F:R -> Prop
HF:F 0
g:R

0 <= Rabs g
apply Rabs_pos. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, 0 <= x -> Rnd_N_pt F x f -> 0 <= f

forall F : R -> Prop, F 0 -> forall x f : R, 0 <= x -> Rnd_N_pt F x f -> 0 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 < x
Hxf:Rnd_N_pt F x f

0 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f
0 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 < x
Hxf:Rnd_N_pt F x f

Rnd_N_pt F 0 0
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f
0 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f

0 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f

0 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f

f = 0
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f

Rnd_N_pt F 0 f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f
F 0
F:R -> Prop
HF:F 0
x, f:R
Hx:0 = x
Hxf:Rnd_N_pt F x f

F 0
exact HF. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, x <= 0 -> Rnd_N_pt F x f -> f <= 0

forall F : R -> Prop, F 0 -> forall x f : R, x <= 0 -> Rnd_N_pt F x f -> f <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Hxf:Rnd_N_pt F x f

f <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f
f <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Hxf:Rnd_N_pt F x f

Rnd_N_pt F 0 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f
f <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f

f <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f

f = 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f

Rnd_N_pt F 0 f
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f
F 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x = 0
Hxf:Rnd_N_pt F x f

F 0
exact HF. Qed.

forall F : R -> Prop, F 0 -> (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_N_pt F x f -> Rnd_N_pt F (Rabs x) (Rabs f)

forall F : R -> Prop, F 0 -> (forall x : R, F x -> F (- x)) -> forall x f : R, Rnd_N_pt F x f -> Rnd_N_pt F (Rabs x) (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f

Rnd_N_pt F (Rabs x) (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f

Rnd_N_pt F (if Rcase_abs x then - x else x) (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

Rnd_N_pt F (- x) (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

Rnd_N_pt F (- x) (- f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0
f <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

forall x0 : R, F x0 -> F (- x0)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0
Rnd_N_pt F (- - x) (- - f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0
f <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

Rnd_N_pt F (- - x) (- - f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0
f <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

f <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

F 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0
x <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x < 0

x <= 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0

Rnd_N_pt F x (Rabs f)
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0

Rnd_N_pt F x f
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
0 <= f
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0

0 <= f
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0

F 0
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0
0 <= x
F:R -> Prop
HF0:F 0
HF:forall x0 : R, F x0 -> F (- x0)
x, f:R
Hxf:Rnd_N_pt F x f
Hx:x >= 0

0 <= x
now apply Rge_le. Qed.

forall (F : R -> Prop) (x d u f : R), F f -> Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> Rabs (f - x) <= x - d -> Rabs (f - x) <= u - x -> Rnd_N_pt F x f

forall (F : R -> Prop) (x d u f : R), F f -> Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> Rabs (f - x) <= x - d -> Rabs (f - x) <= u - x -> Rnd_N_pt F x f
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x

Rnd_N_pt F x f
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x

F f
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x

forall g : R, F g -> Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g

Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
(* g <= d *)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

x - d <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

x - d <= - (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d
g - x <= 0
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

x - d <= x - g
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d
g - x <= 0
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

- d <= - g
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d
g - x <= 0
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

g - x <= 0
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

g <= x
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgd:g <= d

d <= x
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

Rabs (f - x) <= Rabs (g - x)
(* u <= g *)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

u - x <= Rabs (g - x)
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

u - x <= g - x
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g
0 <= g - x
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

0 <= g - x
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

x <= g
F:R -> Prop
x, d, u, f:R
Hf:F f
Hxd:Rnd_DN_pt F x d
Hxu:Rnd_UP_pt F x u
Hd:Rabs (f - x) <= x - d
Hu:Rabs (f - x) <= u - x
g:R
Hg:F g
Hgu:u <= g

x <= u
apply Hxu. Qed.

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> x - d <= u - x -> Rnd_N_pt F x d

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> x - d <= u - x -> Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x

Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x

Rabs (d - x) = x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x

Rabs (x - d) = x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x

0 <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x

d <= x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d

Rnd_N_pt F x d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d

F d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rabs (d - x) <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rabs (d - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d

Rabs (d - x) <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rabs (d - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d

x - d <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d
Rabs (d - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x - d <= u - x
Hdx:Rabs (d - x) = x - d

Rabs (d - x) <= u - x
now rewrite Hdx. Qed.

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> u - x <= x - d -> Rnd_N_pt F x u

forall (F : R -> Prop) (x d u : R), Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> u - x <= x - d -> Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d

Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d

Rabs (u - x) = u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d

0 <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d

x <= u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x

Rnd_N_pt F x u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x

F u
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rabs (u - x) <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rabs (u - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x

Rabs (u - x) <= x - d
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x
Rabs (u - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x

Rabs (u - x) <= u - x
F:R -> Prop
x, d, u:R
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:u - x <= x - d
Hux:Rabs (u - x) = u - x

u - x <= u - x
apply Rle_refl. Qed. Definition Rnd_NG_pt_unique_prop F P := forall x d u, Rnd_DN_pt F x d -> Rnd_N_pt F x d -> Rnd_UP_pt F x u -> Rnd_N_pt F x u -> P x d -> P x u -> d = u.

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> forall x f1 f2 : R, Rnd_NG_pt F P x f1 -> Rnd_NG_pt F P x f2 -> f1 = f2

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> forall x f1 f2 : R, Rnd_NG_pt F P x f1 -> Rnd_NG_pt F P x f2 -> f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1)
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_DN_pt F x f1
H2c:Rnd_DN_pt F x f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_DN_pt F x f1
H2c:Rnd_UP_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_DN_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_UP_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_DN_pt F x f1
H2c:Rnd_UP_pt F x f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_DN_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_UP_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_DN_pt F x f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_UP_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_DN_pt F x f2

f2 = f1
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_UP_pt F x f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:P x f2
H1c:Rnd_UP_pt F x f1
H2c:Rnd_UP_pt F x f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:P x f1
H2a:Rnd_N_pt F x f2
H2b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)
f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)

f1 = f2
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, f1, f2:R
H1a:Rnd_N_pt F x f1
H1b:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f1
H2a:Rnd_N_pt F x f2
H2b:P x f2 \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f2)

f2 = f1
now apply H1b. Qed.

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> round_pred_monotone (Rnd_NG_pt F P)

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> round_pred_monotone (Rnd_NG_pt F P)
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, y, f, g:R
Hf:Rnd_N_pt F x f
Hx:P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Hg:Rnd_N_pt F y g
Hy:P y g \/ (forall f2 : R, Rnd_N_pt F y f2 -> f2 = g)
Hxy:x < y

f <= g
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, y, f, g:R
Hf:Rnd_N_pt F x f
Hx:P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Hg:Rnd_N_pt F y g
Hy:P y g \/ (forall f2 : R, Rnd_N_pt F y f2 -> f2 = g)
Hxy:x = y
f <= g
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, y, f, g:R
Hf:Rnd_N_pt F x f
Hx:P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Hg:Rnd_N_pt F y g
Hy:P y g \/ (forall f2 : R, Rnd_N_pt F y f2 -> f2 = g)
Hxy:x = y

f <= g
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, y, f, g:R
Hf:Rnd_N_pt F x f
Hx:P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Hg:Rnd_N_pt F y g
Hy:P y g \/ (forall f2 : R, Rnd_N_pt F y f2 -> f2 = g)
Hxy:x = y

f = g
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
x, y, f, g:R
Hf:Rnd_N_pt F x f
Hx:P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Hg:Rnd_N_pt F x g
Hy:P x g \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = g)
Hxy:x = y

f = g
eapply Rnd_NG_pt_unique ; try split ; eassumption. Qed.

forall (F : R -> Prop) (P : R -> R -> Prop) (x : R), F x -> Rnd_NG_pt F P x x

forall (F : R -> Prop) (P : R -> R -> Prop) (x : R), F x -> Rnd_NG_pt F P x x
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x

Rnd_NG_pt F P x x
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x

Rnd_N_pt F x x
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x
P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x

P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x

forall f2 : R, Rnd_N_pt F x f2 -> f2 = x
F:R -> Prop
P:R -> R -> Prop
x:R
Hx:F x
f2:R
Hf2:Rnd_N_pt F x f2

f2 = x
now apply Rnd_N_pt_idempotent with F. Qed.

forall (F : R -> Prop) (P : R -> R -> Prop), (forall x : R, F x -> F (- x)) -> (forall x f : R, P x f -> P (- x) (- f)) -> forall x f : R, Rnd_NG_pt F P (- x) (- f) -> Rnd_NG_pt F P x f

forall (F : R -> Prop) (P : R -> R -> Prop), (forall x : R, F x -> F (- x)) -> (forall x f : R, P x f -> P (- x) (- f)) -> forall x f : R, Rnd_NG_pt F P (- x) (- f) -> Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f) \/ (forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f)

Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f) \/ (forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f)

Rnd_N_pt F x f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f) \/ (forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f)
P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f) \/ (forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f)

P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f)

P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f
P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f)

P x f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f
P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:P (- x) (- f)

P (- - x) (- - f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f
P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f

P x f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f2 : R, Rnd_N_pt F (- x) f2 -> f2 = - f

forall f2 : R, Rnd_N_pt F x f2 -> f2 = f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = - - f
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = - - f2
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2
Rnd_N_pt F (- x) (- f2)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

- - f2 = f2
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2
Rnd_N_pt F (- x) (- f2)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

Rnd_N_pt F (- x) (- f2)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

forall x0 : R, F x0 -> F (- x0)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2
Rnd_N_pt F (- - x) (- - f2)
F:R -> Prop
P:R -> R -> Prop
HF:forall x0 : R, F x0 -> F (- x0)
HP:forall x0 f0 : R, P x0 f0 -> P (- x0) (- f0)
x, f:R
H1:Rnd_N_pt F (- x) (- f)
H2:forall f0 : R, Rnd_N_pt F (- x) f0 -> f0 = - f
f2:R
Hxf2:Rnd_N_pt F x f2

Rnd_N_pt F (- - x) (- - f2)
now rewrite 2!Ropp_involutive. Qed.

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> forall rnd1 rnd2 : R -> R, Rnd_NG F P rnd1 -> Rnd_NG F P rnd2 -> forall x : R, rnd1 x = rnd2 x

forall (F : R -> Prop) (P : R -> R -> Prop), Rnd_NG_pt_unique_prop F P -> forall rnd1 rnd2 : R -> R, Rnd_NG F P rnd1 -> Rnd_NG F P rnd2 -> forall x : R, rnd1 x = rnd2 x
F:R -> Prop
P:R -> R -> Prop
HP:Rnd_NG_pt_unique_prop F P
rnd1, rnd2:R -> R
H1:Rnd_NG F P rnd1
H2:Rnd_NG F P rnd2
x:R

rnd1 x = rnd2 x
now apply Rnd_NG_pt_unique with F P x. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f

Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f

Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f

forall f2 : R, Rnd_N_pt F x f2 -> f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> Rabs f0 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:f2 <= f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
0 <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

0 <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f

Rabs x <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f

Rabs x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:0 <= f
H3:Rnd_UP_pt F x f

x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f)
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2

f2 <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2

F f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2

x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Hx':x <= 0

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx':x <= 0

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0

Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f

Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0

Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_DN_pt F x f

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_DN_pt F x f

Rabs x <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_DN_pt F x f

Rabs x <= - f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_DN_pt F x f

- x <= - f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_DN_pt F x f

f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f

Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f

forall f2 : R, Rnd_N_pt F x f2 -> f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> Rabs f0 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= - f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:- f2 <= - f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= - f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f2 <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= - f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f2 <= Rabs f
Hf:f <= 0
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_NA_pt F x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f)
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs x <= Rabs f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

- f2 <= - f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:- x <= - f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

- f2 <= - f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:- x <= - f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

F f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2
f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2

x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f
apply Rle_refl. Qed.

forall F : R -> Prop, F 0 -> Rnd_NG_pt_unique_prop F (fun a b : R => Rabs a <= Rabs b)

forall F : R -> Prop, F 0 -> Rnd_NG_pt_unique_prop F (fun a b : R => Rabs a <= Rabs b)
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u

d = u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u

d <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u

d <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
x <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u

x <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u

u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x

u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x

F d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x
x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:x <= d
Hu:Rabs x <= Rabs u
Hx:0 <= x

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x
0 <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:0 <= x

0 <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0

u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0

F u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0
u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:Rabs x <= Rabs u
Hx:x < 0

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= - u
Hx:x < 0

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0
u <= 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0

u <= 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0

F 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0
x <= 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs x <= Rabs d
Hu:- x <= Rabs u
Hx:x < 0

x <= 0
now apply Rlt_le. Qed.

forall F : R -> Prop, F 0 -> forall x f1 f2 : R, Rnd_NA_pt F x f1 -> Rnd_NA_pt F x f2 -> f1 = f2

forall F : R -> Prop, F 0 -> forall x f1 f2 : R, Rnd_NA_pt F x f1 -> Rnd_NA_pt F x f2 -> f1 = f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_NA_pt F x f1
H2:Rnd_NA_pt F x f2

f1 = f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_NA_pt F x f1
H2:Rnd_NA_pt F x f2

Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f1
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_NA_pt F x f1
H2:Rnd_NA_pt F x f2
Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_NA_pt F x f1
H2:Rnd_NA_pt F x f2

Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f2
now apply -> Rnd_NA_NG_pt. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N_pt F x f -> Rabs x <= Rabs f -> Rnd_NA_pt F x f

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N_pt F x f -> Rabs x <= Rabs f -> Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f

Rnd_NA_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

Rabs (f - x) = Rabs (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

F g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g

F f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

Rabs f <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
f = g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

f = g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

Rabs g <= Rabs f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = 2 * x - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = x - (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = x - - (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f

Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

Rabs x <= Rabs f -> Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

x <= Rabs f -> Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

x <= f -> g <= f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:x <= f

g <= f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:x <= f

2 * x - f <= f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:x <= f

2 * x - f + f <= f + f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:x <= f

2 * x <= 2 * f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:x <= f

0 <= 2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs x <= Rabs f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0

Rabs g <= Rabs f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0

Rabs x <= Rabs f -> Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

Rabs x <= Rabs f -> Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

- x <= Rabs f -> Rabs g <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

- x <= - f -> - g <= - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

- g <= - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

- (2 * x - f) <= - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

f <= 2 * x - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

f + f <= 2 * x - f + f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

2 * f <= 2 * x
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

0 <= 2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f
f <= x
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- x <= - f

f <= x
now apply Ropp_le_cancel. Qed.

forall F : R -> Prop, F 0 -> forall rnd1 rnd2 : R -> R, Rnd_NA F rnd1 -> Rnd_NA F rnd2 -> forall x : R, rnd1 x = rnd2 x

forall F : R -> Prop, F 0 -> forall rnd1 rnd2 : R -> R, Rnd_NA F rnd1 -> Rnd_NA F rnd2 -> forall x : R, rnd1 x = rnd2 x
F:R -> Prop
HF:F 0
rnd1, rnd2:R -> R
H1:Rnd_NA F rnd1
H2:Rnd_NA F rnd2
x:R

rnd1 x = rnd2 x
now apply Rnd_NA_pt_unique with F x. Qed.

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_NA_pt F)

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y

f <= g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y

Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y
Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) y g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y
x <= y
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y

Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) y g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y
x <= y
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_NA_pt F x f
Hyg:Rnd_NA_pt F y g
Hxy:x <= y

x <= y
exact Hxy. Qed.

forall (F : R -> Prop) (x : R), F x -> Rnd_NA_pt F x x

forall (F : R -> Prop) (x : R), F x -> Rnd_NA_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_NA_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_N_pt F x x
F:R -> Prop
x:R
Hx:F x
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs x
F:R -> Prop
x:R
Hx:F x

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f2 <= Rabs x
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

Rabs f <= Rabs x
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

Rabs f = Rabs x
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

f = x
now apply Rnd_N_pt_idempotent with (1 := Hxf). Qed.

forall (F : R -> Prop) (x f : R), Rnd_NA_pt F x f -> F x -> f = x

forall (F : R -> Prop) (x f : R), Rnd_NA_pt F x f -> F x -> f = x
F:R -> Prop
x, f:R
Hf:Rnd_N_pt F x f
Hx:F x

f = x
now apply Rnd_N_pt_idempotent with F. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_DN_pt F x f

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_DN_pt F x f

Rabs f <= Rabs x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_DN_pt F x f

f <= Rabs x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_DN_pt F x f

f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f

forall f2 : R, Rnd_N_pt F x f2 -> f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> Rabs f <= Rabs f0
Hf:0 <= f
H3:Rnd_UP_pt F x f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:f <= f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2
0 <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

0 <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:0 <= f
H3:Rnd_UP_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f)
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2

F f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2
f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_DN_pt F x f2

f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2

f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:f <= x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:0 <= f
Hf2:0 <= f2
H3:Rnd_UP_pt F x f2

x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:0 <= x
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
(* *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x < 0
Hx':x <= 0

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx':x <= 0

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0

Rnd_N0_pt F x f <-> Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f

forall f2 : R, Rnd_N_pt F x f2 -> f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> Rabs f <= Rabs f0
Hf:f <= 0
H3:Rnd_DN_pt F x f
f2:R
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_DN_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 = f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
x <= f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:- f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:- f <= - f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:- f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2
f2 <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
f2:R
H2:- f <= Rabs f2
Hf:f <= 0
H3:Rnd_DN_pt F x f
Hxf2:Rnd_N_pt F x f2
H4:Rnd_UP_pt F x f2

f2 <= 0
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f
Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f

Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
(* . . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f

Rabs f <= Rabs x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f

- f <= Rabs x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f

- f <= - x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
Hf:f <= 0
H3:Rnd_UP_pt F x f

x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N0_pt F x f
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = f)

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x \/ (forall f0 : R, Rnd_N_pt F x f0 -> f0 = f)
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:Rabs f <= Rabs x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

- f <= - f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:- f <= - x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

- f <= - f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:- f <= - x
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
F f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_UP_pt F x f2
x <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f2 <= f
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:x <= f
f2:R
Hxf2:Rnd_N_pt F x f2
Hf:f <= 0
Hf2:f2 <= 0
H3:Rnd_DN_pt F x f2

f2 <= x
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2
Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Hx:x <= 0
H1:Rnd_N_pt F x f
H2:forall f0 : R, Rnd_N_pt F x f0 -> f0 = f
f2:R
Hxf2:Rnd_N_pt F x f2

Rabs f <= Rabs f
apply Rle_refl. Qed.

forall F : R -> Prop, F 0 -> Rnd_NG_pt_unique_prop F (fun x f : R => Rabs f <= Rabs x)

forall F : R -> Prop, F 0 -> Rnd_NG_pt_unique_prop F (fun x f : R => Rabs f <= Rabs x)
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x

d = u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x

d <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x

d <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
x <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x

x <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x

u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:0 <= x

u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:0 <= x

F u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:0 <= x
u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:0 <= x

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= x
Hx:0 <= x

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:u <= x
Hx:0 <= x

u <= x
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= x
Hx:0 <= x
0 <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= x
Hx:0 <= x

0 <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= x
Hx:0 <= x

x <= u
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
u <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0

u <= d
(* *)
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0

F d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0
x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= Rabs x
Hu:Rabs u <= Rabs x
Hx:x < 0

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= - x
Hu:Rabs u <= Rabs x
Hx:x < 0

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:- d <= - x
Hu:Rabs u <= Rabs x
Hx:x < 0

x <= d
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= - x
Hu:Rabs u <= Rabs x
Hx:x < 0
d <= 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= - x
Hu:Rabs u <= Rabs x
Hx:x < 0

d <= 0
F:R -> Prop
HF:F 0
x, d, u:R
Hxd1:Rnd_DN_pt F x d
Hxd2:Rnd_N_pt F x d
Hxu1:Rnd_UP_pt F x u
Hxu2:Rnd_N_pt F x u
Hd:Rabs d <= - x
Hu:Rabs u <= Rabs x
Hx:x < 0

d <= x
apply Hxd1. Qed.

forall F : R -> Prop, F 0 -> forall x f1 f2 : R, Rnd_N0_pt F x f1 -> Rnd_N0_pt F x f2 -> f1 = f2

forall F : R -> Prop, F 0 -> forall x f1 f2 : R, Rnd_N0_pt F x f1 -> Rnd_N0_pt F x f2 -> f1 = f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_N0_pt F x f1
H2:Rnd_N0_pt F x f2

f1 = f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_N0_pt F x f1
H2:Rnd_N0_pt F x f2

Rnd_NG_pt F (fun x0 f : R => Rabs f <= Rabs x0) x f1
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_N0_pt F x f1
H2:Rnd_N0_pt F x f2
Rnd_NG_pt F (fun x0 f : R => Rabs f <= Rabs x0) x f2
F:R -> Prop
HF:F 0
x, f1, f2:R
H1:Rnd_N0_pt F x f1
H2:Rnd_N0_pt F x f2

Rnd_NG_pt F (fun x0 f : R => Rabs f <= Rabs x0) x f2
now apply -> Rnd_N0_NG_pt. Qed.

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N_pt F x f -> Rabs f <= Rabs x -> Rnd_N0_pt F x f

forall F : R -> Prop, F 0 -> forall x f : R, Rnd_N_pt F x f -> Rabs f <= Rabs x -> Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x

Rnd_N0_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x

Rnd_N_pt F x f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x

forall f2 : R, Rnd_N_pt F x f2 -> Rabs f <= Rabs f2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

Rabs (f - x) = Rabs (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

Rabs (f - x) <= Rabs (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

F g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

Rabs (g - x) <= Rabs (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g

F f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
(* *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

Rabs f <= Rabs f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x
f = g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = g - x

f = g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

Rabs f <= Rabs g
(* *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = 2 * x - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = x - (f - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)

g = x - - (g - x)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f

Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

Rabs f <= Rabs x -> Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

Rabs f <= x -> Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x

f <= x -> f <= g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:f <= x

f <= g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:f <= x

f <= 2 * x - f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:f <= x

f + f <= 2 * x - f + f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:f <= x

2 * f <= 2 * x
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:0 <= x
Hxf:f <= x

0 <= 2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0
Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
Hxf:Rabs f <= Rabs x
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0

Rabs f <= Rabs g
(* . *)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x < 0

Rabs f <= Rabs x -> Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

Rabs f <= Rabs x -> Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

Rabs f <= - x -> Rabs f <= Rabs g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0

- f <= - x -> - f <= - g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

- f <= - g
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

- f <= - (2 * x - f)
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

2 * x - f <= f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

2 * x - f + f <= f + f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

2 * x <= 2 * f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

0 <= 2
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x
x <= f
F:R -> Prop
HF:F 0
x, f:R
Rxf:Rnd_N_pt F x f
g:R
Rxg:Rnd_N_pt F x g
H:f - x = - (g - x)
H0:g = 2 * x - f
Hx:x <= 0
Hxf:- f <= - x

x <= f
now apply Ropp_le_cancel. Qed.

forall F : R -> Prop, F 0 -> forall rnd1 rnd2 : R -> R, Rnd_N0 F rnd1 -> Rnd_N0 F rnd2 -> forall x : R, rnd1 x = rnd2 x

forall F : R -> Prop, F 0 -> forall rnd1 rnd2 : R -> R, Rnd_N0 F rnd1 -> Rnd_N0 F rnd2 -> forall x : R, rnd1 x = rnd2 x
F:R -> Prop
HF:F 0
rnd1, rnd2:R -> R
H1:Rnd_N0 F rnd1
H2:Rnd_N0 F rnd2
x:R

rnd1 x = rnd2 x
now apply Rnd_N0_pt_unique with F x. Qed.

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_N0_pt F)

forall F : R -> Prop, F 0 -> round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y

f <= g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y
Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) y g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y
x <= y
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) y g
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y
x <= y
F:R -> Prop
HF:F 0
x, y, f, g:R
Hxf:Rnd_N0_pt F x f
Hyg:Rnd_N0_pt F y g
Hxy:x <= y

x <= y
exact Hxy. Qed.

forall (F : R -> Prop) (x : R), F x -> Rnd_N0_pt F x x

forall (F : R -> Prop) (x : R), F x -> Rnd_N0_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_N0_pt F x x
F:R -> Prop
x:R
Hx:F x

Rnd_N_pt F x x
F:R -> Prop
x:R
Hx:F x
forall f2 : R, Rnd_N_pt F x f2 -> Rabs x <= Rabs f2
F:R -> Prop
x:R
Hx:F x

forall f2 : R, Rnd_N_pt F x f2 -> Rabs x <= Rabs f2
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

Rabs x <= Rabs f
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

Rabs x = Rabs f
F:R -> Prop
x:R
Hx:F x
f:R
Hxf:Rnd_N_pt F x f

x = f
now apply sym_eq, Rnd_N_pt_idempotent with (1 := Hxf). Qed.

forall (F : R -> Prop) (x f : R), Rnd_N0_pt F x f -> F x -> f = x

forall (F : R -> Prop) (x f : R), Rnd_N0_pt F x f -> F x -> f = x
F:R -> Prop
x, f:R
Hf:Rnd_N_pt F x f
Hx:F x

f = x
now apply Rnd_N_pt_idempotent with F. Qed.

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> 0 <= x -> 0 <= f

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> 0 <= x -> 0 <= f
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hx:0 <= x

0 <= f
now apply (HP 0 x). Qed.

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> 0 < f -> 0 < x

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> 0 < f -> 0 < x
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:0 < f

0 < x
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:0 < f

~ x <= 0
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:0 < f
Hx:x <= 0

False
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:0 < f
Hx:x <= 0

f <= 0
now apply (HP x 0). Qed.

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> x <= 0 -> f <= 0

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> x <= 0 -> f <= 0
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hx:x <= 0

f <= 0
now apply (HP x 0). Qed.

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> f < 0 -> x < 0

forall P : R -> R -> Prop, round_pred_monotone P -> P 0 0 -> forall x f : R, P x f -> f < 0 -> x < 0
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:f < 0

x < 0
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:f < 0

~ 0 <= x
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:f < 0
Hx:0 <= x

False
P:R -> R -> Prop
HP:round_pred_monotone P
HP0:P 0 0
x, f:R
Hxf:P x f
Hf:f < 0
Hx:0 <= x

0 <= f
now apply (HP 0 x). Qed.

forall (F1 F2 : R -> Prop) (a b : R), F1 a -> (forall x : R, a <= x <= b -> F1 x <-> F2 x) -> forall x f : R, a <= x <= b -> Rnd_DN_pt F1 x f -> Rnd_DN_pt F2 x f

forall (F1 F2 : R -> Prop) (a b : R), F1 a -> (forall x : R, a <= x <= b -> F1 x <-> F2 x) -> forall x f : R, a <= x <= b -> Rnd_DN_pt F1 x f -> Rnd_DN_pt F2 x f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

Rnd_DN_pt F2 x f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

F2 f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

F1 f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
a <= f <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

a <= f <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

a <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

f <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

f <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
forall g : R, F2 g -> g <= x -> g <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

forall g : R, F2 g -> g <= x -> g <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x

k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:k < a

k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:k < a

k < f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:k < a

a <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

k <= f
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

F1 k
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

F2 k
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
a <= k <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

a <= k <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

a <= k
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

k <= b
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k
k <= x
F1, F2:R -> Prop
a, b:R
Ha:F1 a
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
k:R
Hk:F2 k
Hl:k <= x
H:a <= k

k <= x
exact Hl. Qed.

forall (F1 F2 : R -> Prop) (a b : R), F1 b -> (forall x : R, a <= x <= b -> F1 x <-> F2 x) -> forall x f : R, a <= x <= b -> Rnd_UP_pt F1 x f -> Rnd_UP_pt F2 x f

forall (F1 F2 : R -> Prop) (a b : R), F1 b -> (forall x : R, a <= x <= b -> F1 x <-> F2 x) -> forall x f : R, a <= x <= b -> Rnd_UP_pt F1 x f -> Rnd_UP_pt F2 x f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

Rnd_UP_pt F2 x f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

F2 f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

F1 f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
a <= f <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

a <= f <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

a <= f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
f <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

f <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

x <= f /\ (forall g : R, F2 g -> x <= g -> f <= g)
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

x <= f
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
forall g : R, F2 g -> x <= g -> f <= g
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g

forall g : R, F2 g -> x <= g -> f <= g
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k

f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

F1 k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

F2 k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
a <= k <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

a <= k <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

a <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
k <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

k <= b
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b
x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:k <= b

x <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k
f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k

f <= k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k

f < k
F1, F2:R -> Prop
a, b:R
Hb:F1 b
HF:forall x0 : R, a <= x0 <= b -> F1 x0 <-> F2 x0
x, f:R
Hx:a <= x <= b
H1:F1 f
H2:x <= f
H3:forall g : R, F1 g -> x <= g -> f <= g
k:R
Hk:F2 k
Hl:x <= k
H:b < k

f <= b
now apply H3. Qed.
ensures a real number can always be rounded
Inductive satisfies_any (F : R -> Prop) :=
  Satisfies_any :
    F 0 -> ( forall x : R, F x -> F (-x) ) ->
    round_pred_total (Rnd_DN_pt F) -> satisfies_any F.


forall F1 F2 : R -> Prop, (forall x : R, F1 x <-> F2 x) -> satisfies_any F1 -> satisfies_any F2

forall F1 F2 : R -> Prop, (forall x : R, F1 x <-> F2 x) -> satisfies_any F1 -> satisfies_any F2
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)

satisfies_any F2
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)

F2 0
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
forall x : R, F2 x -> F2 (- x)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)

forall x : R, F2 x -> F2 (- x)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x:R
Hx:F2 x

F2 (- x)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x:R
Hx:F2 x

F1 (- x)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x:R
Hx:F2 x

F1 x
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)
round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x : R, F1 x <-> F2 x
Hzero:F1 0
Hsym:forall x : R, F1 x -> F1 (- x)
Hrnd:round_pred_total (Rnd_DN_pt F1)

round_pred_total (Rnd_DN_pt F2)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x:R

exists f : R, Rnd_DN_pt F2 x f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

exists f0 : R, Rnd_DN_pt F2 x f0
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

Rnd_DN_pt F2 x f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

F2 f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

f <= x /\ (forall g : R, F2 g -> g <= x -> g <= f)
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

f <= x
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f
forall g : R, F2 g -> g <= x -> g <= f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g : R, F1 g -> g <= x -> g <= f

forall g : R, F2 g -> g <= x -> g <= f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g0 : R, F1 g0 -> g0 <= x -> g0 <= f
g:R
Hg:F2 g
Hgx:g <= x

g <= f
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g0 : R, F1 g0 -> g0 <= x -> g0 <= f
g:R
Hg:F2 g
Hgx:g <= x

F1 g
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g0 : R, F1 g0 -> g0 <= x -> g0 <= f
g:R
Hg:F2 g
Hgx:g <= x
g <= x
F1, F2:R -> Prop
Heq:forall x0 : R, F1 x0 <-> F2 x0
Hzero:F1 0
Hsym:forall x0 : R, F1 x0 -> F1 (- x0)
Hrnd:round_pred_total (Rnd_DN_pt F1)
x, f:R
H1:F1 f
H2:f <= x
H3:forall g0 : R, F1 g0 -> g0 <= x -> g0 <= f
g:R
Hg:F2 g
Hgx:g <= x

g <= x
exact Hgx. Qed.

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_DN_pt F)

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_DN_pt F)
F:R -> Prop
Hrnd:round_pred_total (Rnd_DN_pt F)

round_pred (Rnd_DN_pt F)
F:R -> Prop
Hrnd:round_pred_total (Rnd_DN_pt F)

round_pred_total (Rnd_DN_pt F)
F:R -> Prop
Hrnd:round_pred_total (Rnd_DN_pt F)
round_pred_monotone (Rnd_DN_pt F)
F:R -> Prop
Hrnd:round_pred_total (Rnd_DN_pt F)

round_pred_monotone (Rnd_DN_pt F)
apply Rnd_DN_pt_monotone. Qed.

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_UP_pt F)

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_total (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R

exists f : R, Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f

exists f0 : R, Rnd_UP_pt F x f0
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f

Rnd_UP_pt F x (- f)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f

Rnd_UP_pt F (- - x) (- f)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f

forall x0 : R, F x0 -> F (- x0)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f
Rnd_DN_pt F (- x) f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F (- x) f

Rnd_DN_pt F (- x) f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_UP_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_monotone (Rnd_UP_pt F)
apply Rnd_UP_pt_monotone. Qed.

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_ZR_pt F)

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_total (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R

exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x

exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
(* positive *)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f

exists f0 : R, Rnd_ZR_pt F x f0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f

Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f

0 <= x -> Rnd_DN_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f
x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f

x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f
Hx':x <= 0

Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
(* zero *)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f
Hx':x <= 0

x = 0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f
Hx':x <= 0
H:x = 0
Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F x f
Hx':x <= 0
H:x = 0

Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:0 <= x
f:R
Hf:Rnd_DN_pt F 0 f
Hx':x <= 0
H:x = 0

Rnd_UP_pt F 0 f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f

Rnd_UP_pt F 0 f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f

Rnd_UP_pt F 0 0
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f
F 0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f

F 0
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f
F 0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x, f:R
Hf:Rnd_DN_pt F 0 f

F 0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0

exists f : R, Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
(* negative *)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f

exists f0 : R, Rnd_ZR_pt F x f0
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f

Rnd_ZR_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f

0 <= x -> Rnd_DN_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f
x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f
Hx':0 <= x

Rnd_DN_pt F x f
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f
x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f
Hx':0 <= x

0 < 0
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f
x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F
x:R
Hx:x < 0
f:R
Hf:Rnd_UP_pt F x f

x <= 0 -> Rnd_UP_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_ZR_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_monotone (Rnd_ZR_pt F)
(* . *)
F:R -> Prop
Hany:satisfies_any F

F 0
apply Hany. Qed. Definition NG_existence_prop (F : R -> Prop) (P : R -> R -> Prop) := forall x d u, ~F x -> Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> P x u \/ P x d.

forall (F : R -> Prop) (P : R -> R -> Prop), satisfies_any F -> NG_existence_prop F P -> round_pred_total (Rnd_NG_pt F P)

forall (F : R -> Prop) (P : R -> R -> Prop), satisfies_any F -> NG_existence_prop F P -> round_pred_total (Rnd_NG_pt F P)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x:R

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* |up(x) - x| < |dn(x) - x| *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

Rnd_NG_pt F P x u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

Rnd_N_pt F x u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* - . *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

F u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
forall g : R, F g -> Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

forall g : R, F g -> Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

u - x <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

u <= g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

x <= u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g < x

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

Rabs (u - x) < Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

Rabs (x - d) <= Rabs (x - g)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

x - d <= x - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

- d <= - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

g <= d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

0 <= x - g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
0 <= x - d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

0 <= x - d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

d <= x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* - . *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)

forall f2 : R, Rnd_N_pt F x f2 -> f2 = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f

f = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = d

d = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u
u = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = d

Rabs (d - x) <= Rabs (u - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u
u = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = d

Rabs (f - x) <= Rabs (u - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u
u = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = d

F u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u
u = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) < Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u

u = u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* |up(x) - x| = |dn(x) - x| *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* - x = d = u *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

Rnd_NG_pt F P x x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

Rnd_N_pt F x x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

F x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

F d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

P x x \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d

forall f2 : R, Rnd_N_pt F x f2 -> f2 = x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
f2:R
H0:Rnd_N_pt F x f2

f2 = x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
f2:R
H0:Rnd_N_pt F x f2

F x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
He:x = d
f2:R
H0:Rnd_N_pt F x f2

F d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d

~ F x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:F x

False
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:F x

x = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:F x

d = x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* - u >> d *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

Rnd_NG_pt F P x u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

Rnd_N_pt F x u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

F u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
forall g : R, F g -> Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

forall g : R, F g -> Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

u - x <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

u <= g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:x <= g

x <= u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x
Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g < x

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

- (d - x) <= - (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

g - x <= d - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

g <= d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
g:R
Hg:F g
Hxg:g <= x

d <= x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u
P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x u

P x u \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = u)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
(* - d >> u *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

Rnd_NG_pt F P x d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

Rnd_N_pt F x d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

F d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
forall g : R, F g -> Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

forall g : R, F g -> Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

u - x <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

u <= g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:x <= g

x <= u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g < x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

- (d - x) <= - (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

g - x <= d - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

g <= d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
g:R
Hg:F g
Hxg:g <= x

d <= x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) = Rabs (d - x)
Hne:x <> d
Hf:~ F x
H':P x d

P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
exists f : R, Rnd_NG_pt F P x f
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

exists f : R, Rnd_NG_pt F P x f
(* |up(x) - x| > |dn(x) - x| *)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

Rnd_NG_pt F P x d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

Rnd_N_pt F x d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

F d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
forall g : R, F g -> Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

forall g : R, F g -> Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

Rabs (d - x) < Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

Rabs (u - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

u - x <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

u <= g
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

0 <= g - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g
0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

0 <= u - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:x <= g

x <= u
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x
Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g < x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

Rabs (d - x) <= Rabs (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

- (d - x) <= - (g - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

g - x <= d - x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

g <= d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

g - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x
d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

d - x <= 0
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
g:R
Hg:F g
Hxg:g <= x

d <= x
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

P x d \/ (forall f2 : R, Rnd_N_pt F x f2 -> f2 = d)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)

forall f2 : R, Rnd_N_pt F x f2 -> f2 = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f

f = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = d

d = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u
u = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u

u = d
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u

Rabs (u - x) <= Rabs (d - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u

Rabs (f - x) <= Rabs (d - x)
F:R -> Prop
P:R -> R -> Prop
Hany:satisfies_any F
HP:NG_existence_prop F P
x, d:R
Hd:Rnd_DN_pt F x d
u:R
Hu:Rnd_UP_pt F x u
H:Rabs (u - x) > Rabs (d - x)
f:R
Hf:Rnd_N_pt F x f
K:f = u

F d
apply Hd. Qed.

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_NA_pt F)

forall F : R -> Prop, satisfies_any F -> round_pred (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

satisfies_any F
F:R -> Prop
Hany:satisfies_any F
NG_existence_prop F (fun a b : R => Rabs a <= Rabs b)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

NG_existence_prop F (fun a b : R => Rabs a <= Rabs b)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u

Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

Rabs x <= Rabs u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

x <= Rabs u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

x <= u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x
0 <= u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

0 <= u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

x <= u
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

Rabs x <= Rabs u \/ Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

Rabs x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

- x <= Rabs d
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

- x <= - d
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
d <= 0
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

d <= x
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
d <= 0
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

d <= 0
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x <= 0

d <= 0
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x <= 0

d <= x
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))

round_pred_total (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x:R

exists f : R, Rnd_NA_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f

exists f0 : R, Rnd_NA_pt F x f0
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f

Rnd_NA_pt F x f
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f

Rnd_NG_pt F (fun x0 f0 : R => Rabs x0 <= Rabs f0) x f
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f
F 0
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs a <= Rabs b) x f

F 0
F:R -> Prop
Hany:satisfies_any F
round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

round_pred_monotone (Rnd_NA_pt F)
F:R -> Prop
Hany:satisfies_any F

F 0
apply Hany. Qed.

forall F : R -> Prop, F 0 -> satisfies_any F -> round_pred (Rnd_N0_pt F)

forall F : R -> Prop, F 0 -> satisfies_any F -> round_pred (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

round_pred (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

satisfies_any F
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
NG_existence_prop F (fun a b : R => Rabs b <= Rabs a)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

NG_existence_prop F (fun a b : R => Rabs b <= Rabs a)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u

Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

Rabs d <= x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

d <= x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x
0 <= d
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:0 <= x

0 <= d
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

Rabs u <= Rabs x \/ Rabs d <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

Rabs u <= Rabs x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

Rabs u <= - x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

- u <= - x
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
u <= 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

x <= u
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0
u <= 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

u <= 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
x, d, u:R
Hf:~ F x
Hd:Rnd_DN_pt F x d
Hu:Rnd_UP_pt F x u
Hx:x < 0

x <= 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))

round_pred_total (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x:R

exists f : R, Rnd_N0_pt F x f
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a) x f

exists f0 : R, Rnd_N0_pt F x f0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a) x f

Rnd_N0_pt F x f
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a) x f

Rnd_NG_pt F (fun x0 f0 : R => Rabs f0 <= Rabs x0) x f
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a) x f
F 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
H:round_pred_total (Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a))
x, f:R
Hf:Rnd_NG_pt F (fun a b : R => Rabs b <= Rabs a) x f

F 0
F:R -> Prop
HF0:F 0
Hany:satisfies_any F
round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

round_pred_monotone (Rnd_N0_pt F)
F:R -> Prop
HF0:F 0
Hany:satisfies_any F

F 0
apply HF0. Qed. End RND_prop.