\[\begin{split}\newcommand{\alors}{\textsf{then}} \newcommand{\alter}{\textsf{alter}} \newcommand{\as}{\kw{as}} \newcommand{\Assum}[3]{\kw{Assum}(#1)(#2:#3)} \newcommand{\bool}{\textsf{bool}} \newcommand{\case}{\kw{case}} \newcommand{\conc}{\textsf{conc}} \newcommand{\cons}{\textsf{cons}} \newcommand{\consf}{\textsf{consf}} \newcommand{\conshl}{\textsf{cons\_hl}} \newcommand{\Def}[4]{\kw{Def}(#1)(#2:=#3:#4)} \newcommand{\emptyf}{\textsf{emptyf}} \newcommand{\End}{\kw{End}} \newcommand{\kwend}{\kw{end}} \newcommand{\EqSt}{\textsf{EqSt}} \newcommand{\even}{\textsf{even}} \newcommand{\evenO}{\textsf{even}_\textsf{O}} \newcommand{\evenS}{\textsf{even}_\textsf{S}} \newcommand{\false}{\textsf{false}} \newcommand{\filter}{\textsf{filter}} \newcommand{\Fix}{\kw{Fix}} \newcommand{\fix}{\kw{fix}} \newcommand{\for}{\textsf{for}} \newcommand{\forest}{\textsf{forest}} \newcommand{\from}{\textsf{from}} \newcommand{\Functor}{\kw{Functor}} \newcommand{\haslength}{\textsf{has\_length}} \newcommand{\hd}{\textsf{hd}} \newcommand{\ident}{\textsf{ident}} \newcommand{\In}{\kw{in}} \newcommand{\Ind}[4]{\kw{Ind}[#2](#3:=#4)} \newcommand{\ind}[3]{\kw{Ind}~[#1]\left(#2\mathrm{~:=~}#3\right)} \newcommand{\Indp}[5]{\kw{Ind}_{#5}(#1)[#2](#3:=#4)} \newcommand{\Indpstr}[6]{\kw{Ind}_{#5}(#1)[#2](#3:=#4)/{#6}} \newcommand{\injective}{\kw{injective}} \newcommand{\kw}[1]{\textsf{#1}} \newcommand{\lb}{\lambda} \newcommand{\length}{\textsf{length}} \newcommand{\letin}[3]{\kw{let}~#1:=#2~\kw{in}~#3} \newcommand{\List}{\textsf{list}} \newcommand{\lra}{\longrightarrow} \newcommand{\Match}{\kw{match}} \newcommand{\Mod}[3]{{\kw{Mod}}({#1}:{#2}\,\zeroone{:={#3}})} \newcommand{\ModA}[2]{{\kw{ModA}}({#1}=={#2})} \newcommand{\ModS}[2]{{\kw{Mod}}({#1}:{#2})} \newcommand{\ModType}[2]{{\kw{ModType}}({#1}:={#2})} \newcommand{\mto}{.\;} \newcommand{\Nat}{\mathbb{N}} \newcommand{\nat}{\textsf{nat}} \newcommand{\Nil}{\textsf{nil}} \newcommand{\nilhl}{\textsf{nil\_hl}} \newcommand{\nO}{\textsf{O}} \newcommand{\node}{\textsf{node}} \newcommand{\nS}{\textsf{S}} \newcommand{\odd}{\textsf{odd}} \newcommand{\oddS}{\textsf{odd}_\textsf{S}} \newcommand{\ovl}[1]{\overline{#1}} \newcommand{\Pair}{\textsf{pair}} \newcommand{\plus}{\mathsf{plus}} \newcommand{\Prod}{\textsf{prod}} \newcommand{\SProp}{\textsf{SProp}} \newcommand{\Prop}{\textsf{Prop}} \newcommand{\return}{\kw{return}} \newcommand{\Set}{\textsf{Set}} \newcommand{\si}{\textsf{if}} \newcommand{\sinon}{\textsf{else}} \newcommand{\Sort}{\mathcal{S}} \newcommand{\Str}{\textsf{Stream}} \newcommand{\Struct}{\kw{Struct}} \newcommand{\subst}[3]{#1\{#2/#3\}} \newcommand{\tl}{\textsf{tl}} \newcommand{\tree}{\textsf{tree}} \newcommand{\trii}{\triangleright_\iota} \newcommand{\true}{\textsf{true}} \newcommand{\Type}{\textsf{Type}} \newcommand{\unfold}{\textsf{unfold}} \newcommand{\WEV}[3]{\mbox{$#1[] \vdash #2 \lra #3$}} \newcommand{\WEVT}[3]{\mbox{$#1[] \vdash #2 \lra$}\\ \mbox{$ #3$}} \newcommand{\WF}[2]{{\mathcal{W\!F}}(#1)[#2]} \newcommand{\WFE}[1]{\WF{E}{#1}} \newcommand{\WFT}[2]{#1[] \vdash {\mathcal{W\!F}}(#2)} \newcommand{\WFTWOLINES}[2]{{\mathcal{W\!F}}\begin{array}{l}(#1)\\\mbox{}[{#2}]\end{array}} \newcommand{\with}{\kw{with}} \newcommand{\WS}[3]{#1[] \vdash #2 <: #3} \newcommand{\WSE}[2]{\WS{E}{#1}{#2}} \newcommand{\WT}[4]{#1[#2] \vdash #3 : #4} \newcommand{\WTE}[3]{\WT{E}{#1}{#2}{#3}} \newcommand{\WTEG}[2]{\WTE{\Gamma}{#1}{#2}} \newcommand{\WTM}[3]{\WT{#1}{}{#2}{#3}} \newcommand{\zeroone}[1]{[{#1}]} \newcommand{\zeros}{\textsf{zeros}} \end{split}\]

The Coq library

The Coq library is structured into two parts:

  • The initial library: it contains elementary logical notions and data-types. It constitutes the basic state of the system directly available when running Coq;

  • The standard library: general-purpose libraries containing various developments of Coq axiomatizations about sets, lists, sorting, arithmetic, etc. This library comes with the system and its modules are directly accessible through the Require command (see Section Compiled files);

In addition, user-provided libraries or developments are provided by Coq users' community. These libraries and developments are available for download at http://coq.inria.fr (see Section Users’ contributions).

This chapter briefly reviews the Coq libraries whose contents can also be browsed at http://coq.inria.fr/stdlib.

The basic library

This section lists the basic notions and results which are directly available in the standard Coq system. Most of these constructions are defined in the Prelude module in directory theories/Init at the Coq root directory; this includes the modules Notations, Logic, Datatypes, Specif, Peano, Wf and Tactics. Module Logic_Type also makes it in the initial state.

Notations

This module defines the parsing and pretty-printing of many symbols (infixes, prefixes, etc.). However, it does not assign a meaning to these notations. The purpose of this is to define and fix once for all the precedence and associativity of very common notations. The main notations fixed in the initial state are :

Notation

Precedence

Associativity

_ -> _

99

right

_ <-> _

95

no

_ \/ _

85

right

_ /\ _

80

right

~ _

75

right

_ = _

70

no

_ = _ = _

70

no

_ = _ :> _

70

no

_ <> _

70

no

_ <> _ :> _

70

no

_ < _

70

no

_ > _

70

no

_ <= _

70

no

_ >= _

70

no

_ < _ < _

70

no

_ < _ <= _

70

no

_ <= _ < _

70

no

_ <= _ <= _

70

no

_ + _

50

left

_ || _

50

left

_ - _

50

left

_ * _

40

left

_      _

40

left

_ / _

40

left

- _

35

right

/ _

35

right

_ ^ _

30

right

Logic

The basic library of Coq comes with the definitions of standard (intuitionistic) logical connectives (they are defined as inductive constructions). They are equipped with an appealing syntax enriching the subclass form of the syntactic class term. The syntax of form is shown below:

form ::=  True                                           (True)
          False                                          (False)
          ~ form                                         (not)
          form /\ form                                   (and)
          form \/ form                                   (or)
          form -> form                                   (primitive implication)
          form <-> form                                  (iff)
          forall ident : type, form                      (primitive for all)
          exists ident [: specif], form                  (ex)
          exists2 ident [: specif], form & form          (ex2)
          term = term                                    (eq)
          term = term :> specif                          (eq)

Note

Implication is not defined but primitive (it is a non-dependent product of a proposition over another proposition). There is also a primitive universal quantification (it is a dependent product over a proposition). The primitive universal quantification allows both first-order and higher-order quantification.

Propositional Connectives

First, we find propositional calculus connectives:

Inductive True : Prop := I.
Inductive False :  Prop := .
Definition not (A: Prop) := A -> False.
Inductive and (A B:Prop) : Prop := conj (_:A) (_:B).
Section Projections.
 Variables A B : Prop.
 Theorem proj1 : A /\ B -> A.
 Theorem proj2 : A /\ B -> B.
End Projections.
Inductive or (A B:Prop) : Prop :=
| or_introl (_:A)
| or_intror (_:B).
Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).
Definition IF_then_else (P Q R:Prop) := P /\ Q \/ ~ P /\ R.

Quantifiers

Then we find first-order quantifiers:

Definition all (A:Set) (P:A -> Prop) := forall x:A, P x.
Inductive ex (A: Set) (P:A -> Prop) : Prop :=
 ex_intro (x:A) (_:P x).
Inductive ex2 (A:Set) (P Q:A -> Prop) : Prop :=
 ex_intro2 (x:A) (_:P x) (_:Q x).

The following abbreviations are allowed:

exists x:A, P

ex A (fun x:A => P)

exists x, P

ex _ (fun x => P)

exists2 x:A, P & Q

ex2 A (fun x:A => P) (fun x:A => Q)

exists2 x, P & Q

ex2 _ (fun x => P) (fun x => Q)

The type annotation :A can be omitted when A can be synthesized by the system.

Equality

Then, we find equality, defined as an inductive relation. That is, given a type A and an x of type A, the predicate (eq A x) is the smallest one which contains x. This definition, due to Christine Paulin-Mohring, is equivalent to define eq as the smallest reflexive relation, and it is also equivalent to Leibniz' equality.

Inductive eq (A:Type) (x:A) : A -> Prop :=
  eq_refl : eq A x x.

Lemmas

Finally, a few easy lemmas are provided.

Theorem absurd : forall A C:Prop, A -> ~ A -> C.
Section equality.
Variables A B : Type.
Variable f : A -> B.
Variables x y z : A.
Theorem eq_sym : x = y -> y = x.
Theorem eq_trans : x = y -> y = z -> x = z.
Theorem f_equal : x = y -> f x = f y.
Theorem not_eq_sym : x <> y -> y <> x.
End equality.
Definition eq_ind_r :
 forall (A:Type) (x:A) (P:A->Prop), P x -> forall y:A, y = x -> P y.
Definition eq_rec_r :
 forall (A:Type) (x:A) (P:A->Set), P x -> forall y:A, y = x -> P y.
Definition eq_rect_r :
 forall (A:Type) (x:A) (P:A->Type), P x -> forall y:A, y = x -> P y.
Hint Immediate eq_sym not_eq_sym : core.

The theorem f_equal is extended to functions with two to five arguments. The theorem are names f_equal2, f_equal3, f_equal4 and f_equal5. For instance f_equal3 is defined the following way.

forall (A1 A2 A3 B : Type) (f : A1 -> A2 -> A3 -> B) (x1 y1 : A1) (x2 y2 : A2) (x3 y3 : A3), x1 = y1 -> x2 = y2 -> x3 = y3 -> f x1 x2 x3 = f y1 y2 y3

Datatypes

In the basic library, we find in Datatypes.v the definition of the basic data-types of programming, defined as inductive constructions over the sort Set. Some of them come with a special syntax shown below (this syntax table is common with the next section Specification):

specif ::=   specif * specif                           (prod)
            specif + specif                          (sum)
            specif + { specif }                      (sumor)
            { specif } + { specif }                  (sumbool)
            { ident : specif | form }              (sig)
            { ident : specif | form & form }       (sig2)
            { ident : specif & specif }             (sigT)
            { ident : specif & specif & specif }    (sigT2)
term   ::=  (term, term)                               (pair)

Programming

Inductive unit : Set := tt.
Inductive bool : Set := true | false.
Inductive nat : Set := O | S (n:nat).
Inductive option (A:Set) : Set := Some (_:A) | None.
Inductive identity (A:Type) (a:A) : A -> Type :=
  refl_identity : identity A a a.

Note that zero is the letter O, and not the numeral 0.

The predicate identity is logically equivalent to equality but it lives in sort Type. It is mainly maintained for compatibility.

We then define the disjoint sum of A+B of two sets A and B, and their product A*B.

Inductive sum (A B:Set) : Set := inl (_:A) | inr (_:B).
Inductive prod (A B:Set) : Set := pair (_:A) (_:B).
Section projections.
Variables A B : Set.
Definition fst (H: prod A B) := match H with
                              | pair _ _ x y => x
                              end.
Definition snd (H: prod A B) := match H with
                              | pair _ _ x y => y
                              end.
End projections.

Some operations on bool are also provided: andb (with infix notation &&), orb (with infix notation ||), xorb, implb and negb.

Specification

The following notions defined in module Specif.v allow to build new data-types and specifications. They are available with the syntax shown in the previous section Datatypes.

For instance, given A:Type and P:A->Prop, the construct {x:A | P x} (in abstract syntax (sig A P)) is a Type. We may build elements of this set as (exist x p) whenever we have a witness x:A with its justification p:P x.

From such a (exist x p) we may in turn extract its witness x:A (using an elimination construct such as match) but not its justification, which stays hidden, like in an abstract data-type. In technical terms, one says that sig is a weak (dependent) sum. A variant sig2 with two predicates is also provided.

Inductive sig (A:Set) (P:A -> Prop) : Set := exist (x:A) (_:P x).
Inductive sig2 (A:Set) (P Q:A -> Prop) : Set :=
  exist2 (x:A) (_:P x) (_:Q x).

A strong (dependent) sum {x:A & P x} may be also defined, when the predicate P is now defined as a constructor of types in Type.

Inductive sigT (A:Type) (P:A -> Type) : Type := existT (x:A) (_:P x).
Section Projections2.
Variable A : Type.
Variable P : A -> Type.
Definition projT1 (H:sigT A P) := let (x, h) := H in x.
Definition projT2 (H:sigT A P) :=
 match H return P (projT1 H) with
  existT _ _ x h => h
 end.
End Projections2.
Inductive sigT2 (A: Type) (P Q:A -> Type) : Type :=
  existT2 (x:A) (_:P x) (_:Q x).

A related non-dependent construct is the constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B:Prop) : Set := left (_:A) | right (_:B).

This sumbool construct may be used as a kind of indexed boolean data-type. An intermediate between sumbool and sum is the mixed sumor which combines A:Set and B:Prop in the construction A+{B} in Set.

Inductive sumor (A:Set) (B:Prop) : Set :=
| inleft (_:A)
| inright (_:B).

We may define variants of the axiom of choice, like in Martin-Löf's Intuitionistic Type Theory.

Lemma Choice :
 forall (S S':Set) (R:S -> S' -> Prop),
  (forall x:S, {y : S' | R x y}) ->
  {f : S -> S' | forall z:S, R z (f z)}.
Lemma Choice2 :
 forall (S S':Set) (R:S -> S' -> Set),
  (forall x:S, {y : S' &  R x y}) ->
   {f : S -> S' &  forall z:S, R z (f z)}.
Lemma bool_choice :
 forall (S:Set) (R1 R2:S -> Prop),
  (forall x:S, {R1 x} + {R2 x}) ->
  {f : S -> bool |
   forall x:S, f x = true /\ R1 x \/ f x = false /\ R2 x}.

The next construct builds a sum between a data-type A:Type and an exceptional value encoding errors:

Definition Exc := option.
Definition value := Some.
Definition error := None.

This module ends with theorems, relating the sorts Set or Type and Prop in a way which is consistent with the realizability interpretation.

Definition except := False_rec.
Theorem absurd_set : forall (A:Prop) (C:Set), A -> ~ A -> C.
Theorem and_rect2 :
 forall (A B:Prop) (P:Type), (A -> B -> P) -> A /\ B -> P.

Basic Arithmetics

The basic library includes a few elementary properties of natural numbers, together with the definitions of predecessor, addition and multiplication, in module Peano.v. It also provides a scope nat_scope gathering standard notations for common operations (+, *) and a decimal notation for numbers, allowing for instance to write 3 for S (S (S O))). This also works on the left hand side of a match expression (see for example section refine). This scope is opened by default.

Example

The following example is not part of the standard library, but it shows the usage of the notations:

Fixpoint even (n:nat) : bool :=
 match n with
 | 0 => true
 | 1 => false
 | S (S n) => even n
 end.

Now comes the content of module Peano:

Theorem eq_S : forall x y:nat, x = y -> S x = S y.
Definition pred (n:nat) : nat :=
 match n with
 | 0 => 0
 | S u => u
 end.
Theorem pred_Sn : forall m:nat, m = pred (S m).
Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Hint Immediate eq_add_S : core.
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Definition IsSucc (n:nat) : Prop :=
 match n with
 | 0 => False
 | S p => True
 end.
Theorem O_S : forall n:nat, 0 <> S n.
Theorem n_Sn : forall n:nat, n <> S n.
Fixpoint plus (n m:nat) {struct n} : nat :=
 match n with
 | 0 => m
 | S p => S (p + m)
 end
where "n + m" := (plus n m) : nat_scope.
Lemma plus_n_O : forall n:nat, n = n + 0.
Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Fixpoint mult (n m:nat) {struct n} : nat :=
 match n with
 | 0 => 0
 | S p => m + p * m
 end
where "n * m" := (mult n m) : nat_scope.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Lemma mult_n_Sm : forall n m:nat, n * m + n = n * (S m).

Finally, it gives the definition of the usual orderings le, lt, ge and gt.

Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Notation "_ <= _" was already used in scope nat_scope. [notation-overridden,parsing]
Definition lt (n m:nat) := S n <= m. Definition ge (n m:nat) := m <= n. Definition gt (n m:nat) := m < n.

Properties of these relations are not initially known, but may be required by the user from modules Le and Lt. Finally, Peano gives some lemmas allowing pattern matching, and a double induction principle.

Theorem nat_case :
 forall (n:nat) (P:nat -> Prop),
 P 0 -> (forall m:nat, P (S m)) -> P n.
Theorem nat_double_ind :
 forall R:nat -> nat -> Prop,
  (forall n:nat, R 0 n) ->
  (forall n:nat, R (S n) 0) ->
  (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.

Well-founded recursion

The basic library contains the basics of well-founded recursion and well-founded induction, in module Wf.v.

Section Well_founded.
Variable A : Type.
Variable R : A -> A -> Prop.
Inductive Acc (x:A) : Prop :=
  Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
Lemma Acc_inv x : Acc x -> forall y:A, R y x -> Acc y.
Definition well_founded := forall a:A, Acc a.
Hypothesis Rwf : well_founded.
Theorem well_founded_induction :
 forall P:A -> Set,
  (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
Theorem well_founded_ind :
 forall P:A -> Prop,
  (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.

The automatically generated scheme Acc_rect can be used to define functions by fixpoints using well-founded relations to justify termination. Assuming extensionality of the functional used for the recursive call, the fixpoint equation can be proved.

Section FixPoint.
Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
  F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)).
Definition Fix (x:A) := Fix_F x (Rwf x).
Hypothesis F_ext :
  forall (x:A) (f g:forall y:A, R y x -> P y),
    (forall (y:A) (p:R y x), f y p = g y p) -> F x f = F x g.
Lemma Fix_F_eq :
 forall (x:A) (r:Acc x),
   F x (fun (y:A) (p:R y x) => Fix_F y (Acc_inv x r y p)) = Fix_F x r.
Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
Lemma fix_eq : forall x:A, Fix x = F x (fun (y:A) (p:R y x) => Fix y).
End FixPoint.
End Well_founded.

Accessing the Type level

The standard library includes Type level definitions of counterparts of some logic concepts and basic lemmas about them.

The module Datatypes defines identity, which is the Type level counterpart of equality:

Inductive identity (A:Type) (a:A) : A -> Type :=
  identity_refl : identity A a a.

Some properties of identity are proved in the module Logic_Type, which also provides the definition of Type level negation:

Definition notT (A:Type) := A -> False.

Tactics

A few tactics defined at the user level are provided in the initial state, in module Tactics.v. They are listed at http://coq.inria.fr/stdlib, in paragraph Init, link Tactics.

The standard library

Survey

The rest of the standard library is structured into the following subdirectories:

  • Logic : Classical logic and dependent equality

  • Arith : Basic Peano arithmetic

  • PArith : Basic positive integer arithmetic

  • NArith : Basic binary natural number arithmetic

  • ZArith : Basic relative integer arithmetic

  • Numbers : Various approaches to natural, integer and cyclic numbers (currently axiomatically and on top of 2^31 binary words)

  • Bool : Booleans (basic functions and results)

  • Lists : Monomorphic and polymorphic lists (basic functions and results), Streams (infinite sequences defined with co-inductive types)

  • Sets : Sets (classical, constructive, finite, infinite, power set, etc.)

  • FSets : Specification and implementations of finite sets and finite maps (by lists and by AVL trees)

  • Reals : Axiomatization of real numbers (classical, basic functions, integer part, fractional part, limit, derivative, Cauchy series, power series and results,...)

  • Relations : Relations (definitions and basic results)

  • Sorting : Sorted list (basic definitions and heapsort correctness)

  • Strings : 8-bits characters and strings

  • Wellfounded : Well-founded relations (basic results)

These directories belong to the initial load path of the system, and the modules they provide are compiled at installation time. So they are directly accessible with the command Require (see Section Compiled files).

The different modules of the Coq standard library are documented online at http://coq.inria.fr/stdlib.

Peano’s arithmetic (nat)

While in the initial state, many operations and predicates of Peano's arithmetic are defined, further operations and results belong to other modules. For instance, the decidability of the basic predicates are defined here. This is provided by requiring the module Arith.

The following table describes the notations available in scope nat_scope :

Notation

Interpretation

_ < _

lt

_ <= _

le

_ > _

gt

_ >= _

ge

x < y < z

x < y /\ y < z

x < y <= z

x < y /\ y <= z

x <= y < z

x <= y /\ y < z

x <= y <= z

x <= y /\ y <= z

_ + _

plus

_ - _

minus

_ * _

mult

Notations for integer arithmetics

The following table describes the syntax of expressions for integer arithmetics. It is provided by requiring and opening the module ZArith and opening scope Z_scope. It specifies how notations are interpreted and, when not already reserved, the precedence and associativity.

Notation

Interpretation

Precedence

Associativity

_ < _

Z.lt

_ <= _

Z.le

_ > _

Z.gt

_ >= _

Z.ge

x < y < z

x < y /\ y < z

x < y <= z

x < y /\ y <= z

x <= y < z

x <= y /\ y < z

x <= y <= z

x <= y /\ y <= z

_ ?= _

Z.compare

70

no

_ + _

Z.add

_ - _

Z.sub

_ * _

Z.mul

_ / _

Z.div

_ mod _

Z.modulo

40

no

- _

Z.opp

_ ^ _

Z.pow

Example

Require Import ZArith.
(2 + 3)%Z : Z
Open Scope Z_scope.
2 + 3 : Z

Real numbers library

Notations for real numbers

This is provided by requiring and opening the module Reals and opening scope R_scope. This set of notations is very similar to the notation for integer arithmetics. The inverse function was added.

Notation

Interpretation

_ < _

Rlt

_ <= _

Rle

_ > _

Rgt

_ >= _

Rge

x < y < z

x < y /\ y < z

x < y <= z

x < y /\ y <= z

x <= y < z

x <= y /\ y < z

x <= y <= z

x <= y /\ y <= z

_ + _

Rplus

_ - _

Rminus

_ * _

Rmult

_ / _

Rdiv

- _

Ropp

/ _

Rinv

_ ^ _

pow

Example

Require Import Reals.
(2 + 3)%R : R
Open Scope R_scope.
2 + 3 : R

Some tactics for real numbers

In addition to the powerful ring, field and lra tactics (see Chapter Tactics), there are also:

discrR

Proves that two real integer constants are different.

Example

Require Import DiscrR.
Open Scope R_scope.
5 <> 0
5 <> 0
split_Rabs

Allows unfolding the Rabs constant and splits corresponding conjunctions.

Example

Require Import Reals.
Open Scope R_scope.
forall x : R, x <= Rabs x
x:R
Hlt:x < 0
x <= - x
x:R
Hge:x >= 0
x <= x
split_Rmult

Splits a condition that a product is non null into subgoals corresponding to the condition on each operand of the product.

Example

Require Import Reals.
Open Scope R_scope.
forall x y z : R, x * y * z <> 0
x, y, z:R
x <> 0
x, y, z:R
y <> 0
x, y, z:R
z <> 0

These tactics has been written with the tactic language Ltac described in Chapter The tactic language.

List library

Some elementary operations on polymorphic lists are defined here. They can be accessed by requiring module List.

It defines the following notions:

  • length

  • head : first element (with default)

  • tail : all but first element

  • app : concatenation

  • rev : reverse

  • nth : accessing n-th element (with default)

  • map : applying a function

  • flat_map : applying a function returning lists

  • fold_left : iterator (from head to tail)

  • fold_right : iterator (from tail to head)

The following table shows notations available when opening scope list_scope.

Notation

Interpretation

Precedence

Associativity

_ ++ _

app

60

right

_ :: _

cons

60

right

Users’ contributions

Numerous users' contributions have been collected and are available at URL http://coq.inria.fr/opam/www/. On this web page, you have a list of all contributions with informations (author, institution, quick description, etc.) and the possibility to download them one by one. You will also find informations on how to submit a new contribution.