Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
Order on natural numbers.
This file is mostly OBSOLETE now, see module PeanoNat.Nat instead.
le is defined in Init/Peano.v as:
Inductive le (n:nat) : nat -> Prop :=
  | le_n : n <= n
  | le_S : forall m:nat, n <= m -> n <= S m

where "n <= m" := (le n m) : nat_scope.
Require Import PeanoNat.

Local Open Scope nat_scope.

le is an order on nat

Notation le_refl := Nat.le_refl (only parsing).
Notation le_trans := Nat.le_trans (only parsing).
Notation le_antisym := Nat.le_antisymm (only parsing).

Hint Resolve le_trans: arith.
Hint Immediate le_antisym: arith.

Properties of le w.r.t 0

Notation le_0_n := Nat.le_0_l (only parsing).  (* 0 <= n *)
Notation le_Sn_0 := Nat.nle_succ_0 (only parsing).  (* ~ S n <= 0 *)

n:nat

n <= 0 -> 0 = n
n:nat

n <= 0 -> 0 = n
n:nat
H:n <= 0

0 = n
n:nat
H:n <= 0

n = 0
now apply Nat.le_0_r. Qed.

Properties of le w.r.t successor

See also Nat.succ_le_mono.

forall n m : nat, n <= m -> S n <= S m
Proof Peano.le_n_S.

forall n m : nat, S n <= S m -> n <= m
Proof Peano.le_S_n. Notation le_n_Sn := Nat.le_succ_diag_r (only parsing). (* n <= S n *) Notation le_Sn_n := Nat.nle_succ_diag_l (only parsing). (* ~ S n <= n *)

forall n m : nat, S n <= m -> n <= m
Proof Nat.lt_le_incl. Hint Resolve le_0_n le_Sn_0: arith. Hint Resolve le_n_S le_n_Sn le_Sn_n : arith. Hint Immediate le_n_0_eq le_Sn_le le_S_n : arith.

Properties of le w.r.t predecessor

Notation le_pred_n := Nat.le_pred_l (only parsing). (* pred n <= n *)
Notation le_pred := Nat.pred_le_mono (only parsing). (* n<=m -> pred n <= pred m *)

Hint Resolve le_pred_n: arith.

A different elimination principle for the order on natural numbers


forall P : nat -> nat -> Prop, (forall p : nat, P 0 p) -> (forall p q : nat, p <= q -> P p q -> P (S p) (S q)) -> forall n m : nat, n <= m -> P n m

forall P : nat -> nat -> Prop, (forall p : nat, P 0 p) -> (forall p q : nat, p <= q -> P p q -> P (S p) (S q)) -> forall n m : nat, n <= m -> P n m
P:nat -> nat -> Prop
H0:forall p : nat, P 0 p
HS:forall p q : nat, p <= q -> P p q -> P (S p) (S q)

forall n m : nat, n <= m -> P n m
P:nat -> nat -> Prop
H0:forall p : nat, P 0 p
HS:forall p q : nat, p <= q -> P p q -> P (S p) (S q)
n:nat
IHn:forall m : nat, n <= m -> P n m

forall m : nat, S n <= m -> P (S n) m
P:nat -> nat -> Prop
H0:forall p : nat, P 0 p
HS:forall p q : nat, p <= q -> P p q -> P (S p) (S q)
n:nat
IHn:forall m0 : nat, n <= m0 -> P n m0
m:nat
Le:S n <= m

P (S n) m
elim Le; auto with arith. Qed. (* begin hide *) Notation le_O_n := le_0_n (only parsing). Notation le_Sn_O := le_Sn_0 (only parsing). Notation le_n_O_eq := le_n_0_eq (only parsing). (* end hide *)