Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Arith.
Require Import Bool.

Local Open Scope nat_scope.

Definition zerob (n:nat) : bool :=
  match n with
    | O => true
    | S _ => false
  end.


forall n : nat, n = 0 -> zerob n = true

forall n : nat, n = 0 -> zerob n = true
destruct n; [ trivial with bool | inversion 1 ]. Qed. Hint Resolve zerob_true_intro: bool.

forall n : nat, zerob n = true -> n = 0

forall n : nat, zerob n = true -> n = 0
destruct n; [ trivial with bool | inversion 1 ]. Qed.

forall n : nat, n <> 0 -> zerob n = false

forall n : nat, n <> 0 -> zerob n = false
destruct n; [ destruct 1; auto with bool | trivial with bool ]. Qed. Hint Resolve zerob_false_intro: bool.

forall n : nat, zerob n = false -> n <> 0

forall n : nat, zerob n = false -> n <> 0
destruct n; [ inversion 1 | auto with bool ]. Qed.