Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8; coq-prog-args: ("-coqlib" "../.." "-R" ".." "Coq" "-top" "Coq.Classes.CMorphisms") -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Typeclass-based morphism definition and standard, minimal instances

Author: Matthieu Sozeau Institution: LRI, CNRS UMR 8623 - University Paris Sud
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Export Coq.Classes.CRelationClasses.

Generalizable Variables A eqA B C D R RA RB RC m f x y.
Local Obligation Tactic := simpl_crelation.

Set Universe Polymorphism.

Morphisms.

We now turn to the definition of Proper and declare standard instances. These will be used by the setoid_rewrite tactic later.
A morphism for a relation R is a proper element of the relation. The relation R will be instantiated by respectful and A by an arrow type for usual morphisms.
Section Proper.
  Context {A : Type}.

  Class Proper (R : crelation A) (m : A) :=
    proper_prf : R m m.
Every element in the carrier of a reflexive relation is a morphism for this relation. We use a proxy class for this case which is used internally to discharge reflexivity constraints. The Reflexive instance will almost always be used, but it won't apply in general to any kind of Proper (A B) _ _ goal, making proof-search much slower. A cleaner solution would be to be able to set different priorities in different hint bases and select a particular hint database for resolution of a type class constraint.
  Class ProperProxy (R : crelation A) (m : A) :=
    proper_proxy : R m m.

  
A:Type
x:A
ProperProxy eq x
A:Type
x:A
ProperProxy eq x
firstorder. Qed.
A:Type
R:crelation A
H:Reflexive R
x:A
ProperProxy R x
A:Type
R:crelation A
H:Reflexive R
x:A
ProperProxy R x
firstorder. Qed.
A:Type
x:A
R:crelation A
H:Proper R x
ProperProxy R x
A:Type
x:A
R:crelation A
H:Proper R x
ProperProxy R x
firstorder. Qed.
Respectful morphisms.
  
The fully dependent version, not used yet.
  Definition respectful_hetero
  (A B : Type)
  (C : A -> Type) (D : B -> Type)
  (R : A -> B -> Type)
  (R' : forall (x : A) (y : B), C x -> D y -> Type) :
    (forall x : A, C x) -> (forall x : B, D x) -> Type :=
    fun f g => forall x y, R x y -> R' x y (f x) (g y).
The non-dependent version is an instance where we forget dependencies.
  Definition respectful {B} (R : crelation A) (R' : crelation B) : crelation (A -> B) :=
    Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R').
End Proper.
We favor the use of Leibniz equality or a declared reflexive crelation when resolving ProperProxy, otherwise, if the crelation is given (not an evar), we fall back to Proper.
Hint Extern 1 (ProperProxy _ _) => 
  class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances.

Hint Extern 2 (ProperProxy ?R _) => 
  not_evar R; class_apply @proper_proper_proxy : typeclass_instances.
Notations reminiscent of the old syntax for declaring morphisms.
Declare Scope signature_scope.
Delimit Scope signature_scope with signature.

Module ProperNotations.

  Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature))
    (right associativity, at level 55) : signature_scope.

  Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature))
    (right associativity, at level 55) : signature_scope.

  Notation " R --> R' " := (@respectful _ _ (flip (R%signature)) (R'%signature))
    (right associativity, at level 55) : signature_scope.

End ProperNotations.

Arguments Proper {A}%type R%signature m.
Arguments respectful {A B}%type (R R')%signature _ _.

Export ProperNotations.

Local Open Scope signature_scope.
solve_proper try to solve the goal Proper (?==> ... ==>?) f by repeated introductions and setoid rewrites. It should work fine when f is a combination of already known morphisms and quantifiers.
Ltac solve_respectful t :=
 match goal with
   | |- respectful _ _ _ _ =>
     let H := fresh "H" in
     intros ? ? H; solve_respectful ltac:(setoid_rewrite H; t)
   | _ => t; reflexivity
 end.

Ltac solve_proper := unfold Proper; solve_respectful ltac:(idtac).
f_equiv is a clone of f_equal that handles setoid equivalences. For example, if we know that f is a morphism for E1==>E2==>E, then the goal E (f x y) (f x' y') will be transformed by f_equiv into the subgoals E1 x x' and E2 y y'.
Ltac f_equiv :=
 match goal with
  | |- ?R (?f ?x) (?f' _) =>
    let T := type of x in
    let Rx := fresh "R" in
    evar (Rx : crelation T);
    let H := fresh in
    assert (H : (Rx==>R)%signature f f');
    unfold Rx in *; clear Rx; [ f_equiv | apply H; clear H; try reflexivity ]
  | |- ?R ?f ?f' =>
    solve [change (Proper R f); eauto with typeclass_instances | reflexivity ]
  | _ => idtac
 end.

Section Relations.
  Context {A : Type}. 
forall_def reifies the dependent product as a definition.
  Definition forall_def (P : A -> Type) : Type := forall x : A, P x.
Dependent pointwise lifting of a crelation on the range.
  Definition forall_relation (P : A -> Type)
             (sig : forall a, crelation (P a)) : crelation (forall x, P x) :=
    fun f g => forall a, sig a (f a) (g a).
Non-dependent pointwise lifting
  Definition pointwise_relation {B} (R : crelation B) : crelation (A -> B) :=
    fun f g => forall a, R (f a) (g a).

  
A, B:Type
R:crelation B
relation_equivalence (pointwise_relation R) (eq ==> R)
A, B:Type
R:crelation B
relation_equivalence (pointwise_relation R) (eq ==> R)
A, B:Type
R:crelation B
relation_equivalence (pointwise_relation R) (eq ==> R)
A, B:Type
R:crelation B
x, y:A -> B
pointwise_relation R x y -> (eq ==> R) x y
A, B:Type
R:crelation B
x, y:A -> B
(eq ==> R) x y -> pointwise_relation R x y
A, B:Type
R:crelation B
x, y:A -> B
pointwise_relation R x y -> (eq ==> R) x y
simpl_crelation.
A, B:Type
R:crelation B
x, y:A -> B
(eq ==> R) x y -> pointwise_relation R x y
firstorder. Qed.
Subcrelations induce a morphism on the identity.
  
A:Type
RA, RA':crelation A
H:subrelation RA RA'
Proper (RA ==> RA') id
A:Type
RA, RA':crelation A
H:subrelation RA RA'
Proper (RA ==> RA') id
firstorder. Qed.
The subrelation property goes through products as usual.
  
A:Type
RA', RA:crelation A
subl:subrelation RA' RA
B:Type
RB, RB':crelation B
subr:subrelation RB RB'
subrelation (RA ==> RB) (RA' ==> RB')
A:Type
RA', RA:crelation A
subl:subrelation RA' RA
B:Type
RB, RB':crelation B
subr:subrelation RB RB'
subrelation (RA ==> RB) (RA' ==> RB')
simpl_crelation. Qed.
And of course it is reflexive.
  
A:Type
R:crelation A
subrelation R R
A:Type
R:crelation A
subrelation R R
simpl_crelation. Qed.
Proper is itself a covariant morphism for subrelation. We use an unconvertible premise to avoid looping.
  
A:Type
R':crelation A
m:A
mor:Proper R' m
R:crelation A
unc:Unconvertible (crelation A) R R'
sub:subrelation R' R
Proper R m
A:Type
R':crelation A
m:A
mor:Proper R' m
R:crelation A
unc:Unconvertible (crelation A) R R'
sub:subrelation R' R
Proper R m
A:Type
R':crelation A
m:A
mor:Proper R' m
R:crelation A
unc:Unconvertible (crelation A) R R'
sub:subrelation R' R
Proper R m
A:Type
R':crelation A
m:A
mor:Proper R' m
R:crelation A
unc:Unconvertible (crelation A) R R'
sub:subrelation R' R
R' m m
apply mor. Qed.
A:Type
Proper (subrelation ==> eq ==> arrow) Proper
A:Type
Proper (subrelation ==> eq ==> arrow) Proper
A:Type
x, y:crelation A
X:subrelation x y
x0, y0:A
H:x0 = y0
X0:Proper x x0
y y0 y0
A:Type
x, y:crelation A
X:subrelation x y
y0:A
X0:Proper x y0
y y0 y0
firstorder. Qed.
A, B:Type
R, R':crelation B
sub:subrelation R R'
subrelation (pointwise_relation R) (pointwise_relation R')
A, B:Type
R, R':crelation B
sub:subrelation R R'
subrelation (pointwise_relation R) (pointwise_relation R')
A, B:Type
R, R':crelation B
sub:subrelation R R'
x, y:A -> B
X:pointwise_relation R x y
a:A
R' (x a) (y a)
A, B:Type
R, R':crelation B
sub:subrelation R R'
x, y:A -> B
X:forall a0 : A, R (x a0) (y a0)
a:A
R' (x a) (y a)
A, B:Type
R, R':crelation B
sub:subrelation R R'
x, y:A -> B
X:forall a0 : A, R (x a0) (y a0)
a:A
R (x a) (y a)
auto. Qed.
For dependent function types.
  
A:Type
P:A -> Type
R, S:forall x : A, crelation (P x)
(forall a : A, subrelation (R a) (S a)) -> subrelation (forall_relation P R) (forall_relation P S)
A:Type
P:A -> Type
R, S:forall x : A, crelation (P x)
(forall a : A, subrelation (R a) (S a)) -> subrelation (forall_relation P R) (forall_relation P S)
A:Type
P:A -> Type
R, S:forall x0 : A, crelation (P x0)
X:forall a0 : A, subrelation (R a0) (S a0)
x, y:forall x0 : A, P x0
X0:forall_relation P R x y
a:A
S a (x a) (y a)
firstorder. Qed. End Relations. Typeclasses Opaque respectful pointwise_relation forall_relation. Arguments forall_relation {A P}%type sig%signature _ _. Arguments pointwise_relation A%type {B}%type R%signature _ _. Hint Unfold Reflexive : core. Hint Unfold Symmetric : core. Hint Unfold Transitive : core.
Resolution with subrelation: favor decomposing products over applying reflexivity for unconstrained goals.
Ltac subrelation_tac T U :=
  (is_ground T ; is_ground U ; class_apply @subrelation_refl) ||
    class_apply @subrelation_respectful || class_apply @subrelation_refl.

Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances.

CoInductive apply_subrelation : Prop := do_subrelation.

Ltac proper_subrelation :=
  match goal with
    [ H : apply_subrelation |- _ ] => clear H ; class_apply @subrelation_proper
  end.

Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances.
Essential subrelation instances for iff, impl and pointwise_relation.
subrelation iff impl
subrelation iff impl
firstorder. Qed.
subrelation iff (flip impl)
subrelation iff (flip impl)
firstorder. Qed.
Essential subrelation instances for iffT and arrow.
subrelation iffT arrow
subrelation iffT arrow
firstorder. Qed.
subrelation iffT (flip arrow)
subrelation iffT (flip arrow)
firstorder. Qed.
We use an extern hint to help unification.
Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) =>
  apply (@forall_subrelation A B R S) ; intro : typeclass_instances.

Section GenericInstances.
  (* Share universes *)
  Implicit Types A B C : Type.
We can build a PER on the Coq function space if we have PERs on the domain and codomain.
  Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').

  
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R' (x x0) (z y0)
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R' (x x0) (z y0)
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R x0 x0
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
X2:R x0 x0
R' (x x0) (z y0)
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R x0 x0
Tactic failure: The relation R is not a declared transitive relation. Maybe you need to require the Coq.Classes.RelationClasses library.
symmetry... - transitivity (y x0)... Qed. Unset Strict Universe Declaration.
The complement of a crelation conserves its proper elements.
  
The flip too, actually the flip instance is a bit more general.
  Definition flip_proper
          `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) :
    Proper (RB ==> RA ==> RC) (flip f) := _.
  
  
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R' (x x0) (z y0)
A:Type
R:crelation A
H:PER R
B:Type
R':crelation B
H0:PER R'
x, y, z:A -> B
X:(R ==> R') x y
X0:(R ==> R') y z
x0, y0:A
X1:R x0 y0
R' (x x0) (z y0)
The reference mor was not found in the current environment.
Qed.
Every Transitive crelation gives rise to a binary morphism on impl, contravariant in the first argument, covariant in the second.
  Global Program 
  Instance trans_contra_co_type_morphism
    `(Transitive A R) : Proper (R --> R ++> arrow) R.
  
  Next Obligation.
  Proof with auto.
    transitivity x...
    transitivity x0...
  Qed.
Proper declarations for partial applications.
  Global Program 
  Instance trans_contra_inv_impl_type_morphism
  `(Transitive A R) : Proper (R --> flip arrow) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity y...
  Qed.

  Global Program 
  Instance trans_co_impl_type_morphism
    `(Transitive A R) : Proper (R ++> arrow) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity x0...
  Qed.

  Global Program 
  Instance trans_sym_co_inv_impl_type_morphism
    `(PER A R) : Proper (R ++> flip arrow) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity y... symmetry...
  Qed.

  Instance trans_sym_contra_arrow_morphism
    `(PER A R) : Proper (R --> arrow) (R x) | 3.

  Next Obligation.
  Proof with auto.
    transitivity x0... symmetry...
  Qed.

  Instance per_partial_app_type_morphism
  `(PER A R) : Proper (R ==> iffT) (R x) | 2.

  Next Obligation.
  Proof with auto.
    split.
    - intros ; transitivity x0...
    - intros.
      transitivity y...
      symmetry...
  Qed.
Every Transitive crelation induces a morphism by "pushing" an R x y on the left of an R x z proof to get an R y z goal.
  Global Program 
  Instance trans_co_eq_inv_arrow_morphism
  `(Transitive A R) : Proper (R ==> (@eq A) ==> flip arrow) R | 2.

  Next Obligation.
  Proof with auto.
    transitivity y...
  Qed.
Every Symmetric and Transitive crelation gives rise to an equivariant morphism.
  Global Program 
  Instance PER_type_morphism `(PER A R) : Proper (R ==> R ==> iffT) R | 1.

  Next Obligation.
  Proof with auto.
    split ; intros.
    - transitivity x0... transitivity x... symmetry...

    - transitivity y... transitivity y0... symmetry...
  Qed.

  Lemma symmetric_equiv_flip `(Symmetric A R) : relation_equivalence R (flip R).
  Proof. firstorder. Qed.

  Instance compose_proper A B C RA RB RC :
    Proper ((RB ==> RC) ==> (RA ==> RB) ==> (RA ==> RC)) (@compose A B C).

  Next Obligation.
  Proof.
    simpl_crelation.
    unfold compose. firstorder. 
  Qed.
Coq functions are morphisms for Leibniz equality, applied only if really needed.
  Instance reflexive_eq_dom_reflexive `(Reflexive B R') :
    Reflexive (@Logic.eq A ==> R').
  Proof. simpl_crelation. Qed.
respectful is a morphism for crelation equivalence .
  Instance respectful_morphism :
    Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence) 
           (@respectful A B).
  Proof. 
    intros A B R R' HRR' S S' HSS' f g. 
    unfold respectful , relation_equivalence in *; simpl in *.
    split ; intros H x y Hxy.
    - apply (fst (HSS' _ _)). apply H. now apply (snd (HRR' _ _)).
    - apply (snd (HSS' _ _)). apply H. now apply (fst (HRR' _ _)).
  Qed.
R is Reflexive, hence we can build the needed proof.
  Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) :
    Proper R' (m x).
  Proof. simpl_crelation. Qed.
  
  Class Params {A} (of : A) (arity : nat).
    
  Lemma flip_respectful {A B} (R : crelation A) (R' : crelation B) :
    relation_equivalence (flip (R ==> R')) (flip R ==> flip R').
  Proof.
    intros.
    unfold flip, respectful.
    split ; intros ; intuition.
  Qed.
Treating flip: can't make them direct instances as we need at least a flip present in the goal.
  Lemma flip1 `(subrelation A R' R) : subrelation (flip (flip R')) R.
  Proof. firstorder. Qed.
  
  Lemma flip2 `(subrelation A R R') : subrelation R (flip (flip R')).
  Proof. firstorder. Qed.
That's if and only if
  Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R.
  Proof. simpl_crelation. Qed.
Once we have normalized, we will apply this instance to simplify the problem.
  Definition proper_flip_proper `(mor : Proper A R m) : Proper (flip R) m := mor.
Every reflexive crelation gives rise to a morphism, only for immediately solving goals without variables.
  Lemma reflexive_proper `{Reflexive A R} (x : A) : Proper R x.
  Proof. firstorder. Qed.
  
  Lemma proper_eq {A} (x : A) : Proper (@eq A) x.
  Proof. intros. apply reflexive_proper. Qed.
  
End GenericInstances.

Class PartialApplication.

CoInductive normalization_done : Prop := did_normalization.

Ltac partial_application_tactic :=
  let rec do_partial_apps H m cont := 
    match m with
      | ?m' ?x => class_apply @Reflexive_partial_app_morphism ; 
        [(do_partial_apps H m' ltac:(idtac))|clear H]
      | _ => cont
    end
  in
  let rec do_partial H ar m := 
    match ar with
      | 0%nat => do_partial_apps H m ltac:(fail 1)
      | S ?n' =>
        match m with
          ?m' ?x => do_partial H n' m'
        end
    end
  in
  let params m sk fk :=
    (let m' := fresh in head_of_constr m' m ;
     let n := fresh in evar (n:nat) ;
     let v := eval compute in n in clear n ;
      let H := fresh in
        assert(H:Params m' v) by typeclasses eauto ;
          let v' := eval compute in v in subst m';
            (sk H v' || fail 1))
    || fk
  in
  let on_morphism m cont :=
    params m ltac:(fun H n => do_partial H n m)
      ltac:(cont)
  in
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | [ _ : @Params _ _ _ |- _ ] => fail 1
    | [ |- @Proper ?T _ (?m ?x) ] =>
      match goal with
        | [ H : PartialApplication |- _ ] =>
          class_apply @Reflexive_partial_app_morphism; [|clear H]
        | _ => on_morphism (m x)
          ltac:(class_apply @Reflexive_partial_app_morphism)
      end
  end.
Bootstrap !!!
Instance proper_proper : Proper (relation_equivalence ==> eq ==> iffT) (@Proper A).
Proof.
  intros A R R' HRR' x y <-. red in HRR'.
  split ; red ; intros. 
  - now apply (fst (HRR' _ _)).
  - now apply (snd (HRR' _ _)).
Qed.

Ltac proper_reflexive :=
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | _ => class_apply proper_eq || class_apply @reflexive_proper
  end.


Hint Extern 1 (subrelation (flip _) _) => class_apply @flip1 : typeclass_instances.
Hint Extern 1 (subrelation _ (flip _)) => class_apply @flip2 : typeclass_instances.

(* Hint Extern 1 (Proper _ (complement _)) => apply @complement_proper  *)
(*   : typeclass_instances. *)
Hint Extern 1 (Proper _ (flip _)) => apply @flip_proper 
  : typeclass_instances.
Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_flip_proper 
  : typeclass_instances.
Hint Extern 4 (@Proper _ _ _) => partial_application_tactic 
  : typeclass_instances.
Hint Extern 7 (@Proper _ _ _) => proper_reflexive 
  : typeclass_instances.
Special-purpose class to do normalization of signatures w.r.t. flip.
Section Normalize.
  Context (A : Type).

  Class Normalizes (m : crelation A) (m' : crelation A) :=
    normalizes : relation_equivalence m m'.
Current strategy: add flip everywhere and reduce using subrelation afterwards.
  Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
  Proof.
    red in H, H0. red in H.
    apply (snd (H _ _)). 
    assumption.
  Qed.

  Lemma flip_atom R : Normalizes R (flip (flip R)).
  Proof.
    firstorder.
  Qed.

End Normalize.

Lemma flip_arrow `(NA : Normalizes A R (flip R'''), NB : Normalizes B R' (flip R'')) :
  Normalizes (A -> B) (R ==> R') (flip (R''' ==> R'')%signature).
Proof. 
  unfold Normalizes in *. intros.
  rewrite NA, NB. firstorder. 
Qed.

Ltac normalizes :=
  match goal with
    | [ |- Normalizes _ (respectful _ _) _ ] => class_apply @flip_arrow
    | _ => class_apply @flip_atom
  end.

Ltac proper_normalization :=
  match goal with
    | [ _ : normalization_done |- _ ] => fail 1
    | [ _ : apply_subrelation |- @Proper _ ?R _ ] => 
      let H := fresh "H" in
      set(H:=did_normalization) ; class_apply @proper_normalizes_proper
  end.

Hint Extern 1 (Normalizes _ _ _) => normalizes : typeclass_instances.
Hint Extern 6 (@Proper _ _ _) => proper_normalization 
  : typeclass_instances.
When the crelation on the domain is symmetric, we can flip the crelation on the codomain. Same for binary functions.
Lemma proper_sym_flip :
 forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f),
 Proper (R1==>flip R2) f.
Proof.
intros A R1 Sym B R2 f Hf.
intros x x' Hxx'. apply Hf, Sym, Hxx'.
Qed.

Lemma proper_sym_flip_2 :
 forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f),
 Proper (R1==>R2==>flip R3) f.
Proof.
intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
intros x x' Hxx' y y' Hyy'. apply Hf; auto.
Qed.
When the crelation on the domain is symmetric, a predicate is compatible with iff as soon as it is compatible with impl. Same with a binary crelation.
Lemma proper_sym_impl_iff : forall `(Symmetric A R)`(Proper _ (R==>impl) f),
 Proper (R==>iff) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.

Lemma proper_sym_arrow_iffT : forall `(Symmetric A R)`(Proper _ (R==>arrow) f),
 Proper (R==>iffT) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.

Lemma proper_sym_impl_iff_2 :
 forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f),
 Proper (R==>R'==>iff) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.

Lemma proper_sym_arrow_iffT_2 :
 forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>arrow) f),
 Proper (R==>R'==>iffT) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.
A PartialOrder is compatible with its underlying equivalence.
Require Import Relation_Definitions.

Instance PartialOrder_proper_type `(PartialOrder A eqA R) :
  Proper (eqA==>eqA==>iffT) R.
Proof.
intros.
apply proper_sym_arrow_iffT_2; auto with *.
intros x x' Hx y y' Hy Hr.
transitivity x.
- generalize (partial_order_equivalence x x'); compute; intuition.
- transitivity y; auto.
  generalize (partial_order_equivalence y y'); compute; intuition.
Qed.
From a PartialOrder to the corresponding StrictOrder: lt = le ¬eq. If the order is total, we could also say gt = ¬le.
Lemma PartialOrder_StrictOrder `(PartialOrder A eqA R) :
  StrictOrder (relation_conjunction R (complement eqA)).
Proof.
split; compute.
- intros x (_,Hx). apply Hx, Equivalence_Reflexive.
- intros x y z (Hxy,Hxy') (Hyz,Hyz'). split.
  + apply PreOrder_Transitive with y; assumption.
  + intro Hxz.
    apply Hxy'.
    apply partial_order_antisym; auto.
    rewrite Hxz. auto.
Qed.
From a StrictOrder to the corresponding PartialOrder: le = lt eq. If the order is total, we could also say ge = ¬lt.
Lemma StrictOrder_PreOrder
 `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iffT) R) :
 PreOrder (relation_disjunction R eqA).
Proof.
split.
- intros x. right. reflexivity.
- intros x y z [Hxy|Hxy] [Hyz|Hyz].
  + left. transitivity y; auto.
  + left. rewrite <- Hyz; auto.
  + left. rewrite Hxy; auto.
  + right. transitivity y; auto.
Qed.

Hint Extern 4 (PreOrder (relation_disjunction _ _)) => 
  class_apply StrictOrder_PreOrder : typeclass_instances.

Lemma StrictOrder_PartialOrder
  `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iffT) R) :
  PartialOrder eqA (relation_disjunction R eqA).
Proof.
intros. intros x y. compute. intuition.
elim (StrictOrder_Irreflexive x).
transitivity y; auto.
Qed.

Hint Extern 4 (StrictOrder (relation_conjunction _ _)) => 
  class_apply PartialOrder_StrictOrder : typeclass_instances.

Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) => 
  class_apply StrictOrder_PartialOrder : typeclass_instances.