Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8; coq-prog-args: ("-coqlib" "../.." "-R" ".." "Coq" "-top" "Coq.Classes.Morphisms") -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Typeclass-based morphism definition and standard, minimal instances
Require Import Coq.Program.Basics. Require Import Coq.Program.Tactics. Require Import Coq.Relations.Relation_Definitions. Require Export Coq.Classes.RelationClasses. Generalizable Variables A eqA B C D R RA RB RC m f x y. Local Obligation Tactic := simpl_relation.
Morphisms.
A morphism for a relation R is a proper element of the relation.
The relation R will be instantiated by respectful and A by an arrow
type for usual morphisms.
Section Proper. Let U := Type. Context {A B : U}. Class Proper (R : relation A) (m : A) : Prop := proper_prf : R m m.
Every element in the carrier of a reflexive relation is a morphism
for this relation. We use a proxy class for this case which is used
internally to discharge reflexivity constraints. The Reflexive
instance will almost always be used, but it won't apply in general to
any kind of Proper (A → B) _ _ goal, making proof-search much
slower. A cleaner solution would be to be able to set different
priorities in different hint bases and select a particular hint
database for resolution of a type class constraint.
Class ProperProxy (R : relation A) (m : A) : Prop := proper_proxy : R m m.U:=Type:TypeA, B:Ux:AProperProxy eq xfirstorder. Qed.U:=Type:TypeA, B:Ux:AProperProxy eq xU:=Type:TypeA, B:UR:relation AH:Reflexive Rx:AProperProxy R xfirstorder. Qed.U:=Type:TypeA, B:UR:relation AH:Reflexive Rx:AProperProxy R xU:=Type:TypeA, B:Ux:AR:relation AH:Proper R xProperProxy R xfirstorder. Qed.U:=Type:TypeA, B:Ux:AR:relation AH:Proper R xProperProxy R x
Respectful morphisms.
The fully dependent version, not used yet.
Definition respectful_hetero (A B : Type) (C : A -> Type) (D : B -> Type) (R : A -> B -> Prop) (R' : forall (x : A) (y : B), C x -> D y -> Prop) : (forall x : A, C x) -> (forall x : B, D x) -> Prop := fun f g => forall x y, R x y -> R' x y (f x) (g y).
The non-dependent version is an instance where we forget dependencies.
Definition respectful (R : relation A) (R' : relation B) : relation (A -> B) := Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R'). End Proper.
We favor the use of Leibniz equality or a declared reflexive relation
when resolving ProperProxy, otherwise, if the relation is given (not an evar),
we fall back to Proper.
Hint Extern 1 (ProperProxy _ _) => class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances. Hint Extern 2 (ProperProxy ?R _) => not_evar R; class_apply @proper_proper_proxy : typeclass_instances.
Notations reminiscent of the old syntax for declaring morphisms.
Declare Scope signature_scope. Delimit Scope signature_scope with signature. Module ProperNotations. Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature)) (right associativity, at level 55) : signature_scope. Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature)) (right associativity, at level 55) : signature_scope. Notation " R --> R' " := (@respectful _ _ (flip (R%signature)) (R'%signature)) (right associativity, at level 55) : signature_scope. End ProperNotations. Arguments Proper {A}%type R%signature m. Arguments respectful {A B}%type (R R')%signature _ _. Export ProperNotations. Local Open Scope signature_scope.
solve_proper try to solve the goal Proper (?==> ... ==>?) f
by repeated introductions and setoid rewrites. It should work
fine when f is a combination of already known morphisms and
quantifiers.
Ltac solve_respectful t := match goal with | |- respectful _ _ _ _ => let H := fresh "H" in intros ? ? H; solve_respectful ltac:(setoid_rewrite H; t) | _ => t; reflexivity end. Ltac solve_proper := unfold Proper; solve_respectful ltac:(idtac).
f_equiv is a clone of f_equal that handles setoid equivalences.
For example, if we know that f is a morphism for E1==>E2==>E,
then the goal E (f x y) (f x' y') will be transformed by f_equiv
into the subgoals E1 x x' and E2 y y'.
Ltac f_equiv := match goal with | |- ?R (?f ?x) (?f' _) => let T := type of x in let Rx := fresh "R" in evar (Rx : relation T); let H := fresh in assert (H : (Rx==>R)%signature f f'); unfold Rx in *; clear Rx; [ f_equiv | apply H; clear H; try reflexivity ] | |- ?R ?f ?f' => solve [change (Proper R f); eauto with typeclass_instances | reflexivity ] | _ => idtac end. Section Relations. Let U := Type. Context {A B : U} (P : A -> U).
forall_def reifies the dependent product as a definition.
Definition forall_def : Type := forall x : A, P x.
Dependent pointwise lifting of a relation on the range.
Definition forall_relation (sig : forall a, relation (P a)) : relation (forall x, P x) := fun f g => forall a, sig a (f a) (g a).
Non-dependent pointwise lifting
Definition pointwise_relation (R : relation B) : relation (A -> B) := fun f g => forall a, R (f a) (g a).U:=Type:TypeA, B:UP:A -> UR:relation Brelation_equivalence (pointwise_relation R) (eq ==> R)U:=Type:TypeA, B:UP:A -> UR:relation Brelation_equivalence (pointwise_relation R) (eq ==> R)split; reduce; subst; firstorder. Qed.U:=Type:TypeA, B:UP:A -> UR:relation Brelation_equivalence (pointwise_relation R) (eq ==> R)
Subrelations induce a morphism on the identity.
U:=Type:TypeA, B:UP:A -> URA, RA':relation AH:subrelation RA RA'Proper (RA ==> RA') idfirstorder. Qed.U:=Type:TypeA, B:UP:A -> URA, RA':relation AH:subrelation RA RA'Proper (RA ==> RA') id
The subrelation property goes through products as usual.
U:=Type:TypeA, B:UP:A -> URA', RA:relation Asubl:subrelation RA' RARB, RB':relation Bsubr:subrelation RB RB'subrelation (RA ==> RB) (RA' ==> RB')unfold subrelation in *; firstorder. Qed.U:=Type:TypeA, B:UP:A -> URA', RA:relation Asubl:subrelation RA' RARB, RB':relation Bsubr:subrelation RB RB'subrelation (RA ==> RB) (RA' ==> RB')
And of course it is reflexive.
U:=Type:TypeA, B:UP:A -> UR:relation Asubrelation R Runfold subrelation; firstorder. Qed.U:=Type:TypeA, B:UP:A -> UR:relation Asubrelation R R
Proper is itself a covariant morphism for subrelation.
We use an unconvertible premise to avoid looping.
U:=Type:TypeA, B:UP:A -> UR':relation Am:Amor:Proper R' mR:relation Aunc:Unconvertible (relation A) R R'sub:subrelation R' RProper R mU:=Type:TypeA, B:UP:A -> UR':relation Am:Amor:Proper R' mR:relation Aunc:Unconvertible (relation A) R R'sub:subrelation R' RProper R mU:=Type:TypeA, B:UP:A -> UR':relation Am:Amor:Proper R' mR:relation Aunc:Unconvertible (relation A) R R'sub:subrelation R' RProper R mapply mor. Qed.U:=Type:TypeA, B:UP:A -> UR':relation Am:Amor:Proper R' mR:relation Aunc:Unconvertible (relation A) R R'sub:subrelation R' RR' m mU:=Type:TypeA, B:UP:A -> UProper (subrelation ==> eq ==> impl) ProperU:=Type:TypeA, B:UP:A -> UProper (subrelation ==> eq ==> impl) ProperU:=Type:TypeA, B:UP:A -> Ux, y:relation AH:subrelation x yx0, y0:AH0:x0 = y0H1:Proper x x0y y0 y0firstorder. Qed.U:=Type:TypeA, B:UP:A -> Ux, y:relation AH:subrelation x yy0:AH1:Proper x y0y y0 y0U:=Type:TypeA, B:UP:A -> UR, R':relation Bsub:subrelation R R'subrelation (pointwise_relation R) (pointwise_relation R')U:=Type:TypeA, B:UP:A -> UR, R':relation Bsub:subrelation R R'subrelation (pointwise_relation R) (pointwise_relation R')U:=Type:TypeA, B:UP:A -> UR, R':relation Bsub:subrelation R R'x, y:A -> BH:pointwise_relation R x ya:AR' (x a) (y a)U:=Type:TypeA, B:UP:A -> UR, R':relation Bsub:subrelation R R'x, y:A -> BH:forall a0 : A, R (x a0) (y a0)a:AR' (x a) (y a)apply H. Qed.U:=Type:TypeA, B:UP:A -> UR, R':relation Bsub:subrelation R R'x, y:A -> BH:forall a0 : A, R (x a0) (y a0)a:AR (x a) (y a)
For dependent function types.
U:=Type:TypeA, B:UP:A -> UR, S:forall x : A, relation (P x)(forall a : A, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S)U:=Type:TypeA, B:UP:A -> UR, S:forall x : A, relation (P x)(forall a : A, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S)U:=Type:TypeA, B:UP:A -> UR, S:forall x0 : A, relation (P x0)H:forall a0 : A, subrelation (R a0) (S a0)x, y:forall x0 : A, P x0H0:forall_relation R x ya:AS a (x a) (y a)apply H0. Qed. End Relations. Typeclasses Opaque respectful pointwise_relation forall_relation. Arguments forall_relation {A P}%type sig%signature _ _. Arguments pointwise_relation A%type {B}%type R%signature _ _. Hint Unfold Reflexive : core. Hint Unfold Symmetric : core. Hint Unfold Transitive : core.U:=Type:TypeA, B:UP:A -> UR, S:forall x0 : A, relation (P x0)H:forall a0 : A, subrelation (R a0) (S a0)x, y:forall x0 : A, P x0H0:forall_relation R x ya:AR a (x a) (y a)
Resolution with subrelation: favor decomposing products over applying reflexivity
for unconstrained goals.
Ltac subrelation_tac T U := (is_ground T ; is_ground U ; class_apply @subrelation_refl) || class_apply @subrelation_respectful || class_apply @subrelation_refl. Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances. CoInductive apply_subrelation : Prop := do_subrelation. Ltac proper_subrelation := match goal with [ H : apply_subrelation |- _ ] => clear H ; class_apply @subrelation_proper end. Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances.
Essential subrelation instances for iff, impl and pointwise_relation.
subrelation iff implfirstorder. Qed.subrelation iff implsubrelation iff (flip impl)firstorder. Qed.subrelation iff (flip impl)
We use an extern hint to help unification.
Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) => apply (@forall_subrelation A B R S) ; intro : typeclass_instances. Section GenericInstances. (* Share universes *) Let U := Type. Context {A B C : U}.
We can build a PER on the Coq function space if we have PERs on the domain and
codomain.
Instance respectful_per `(PER A R, PER B R') : PER (R ==> R').U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0R' (x x0) (z y0)U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0R' (x x0) (z y0)U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0R x0 x0U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0H4:R x0 x0R' (x x0) (z y0)U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0R x0 x0symmetry...U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0R y0 x0transitivity (y x0)... Qed.U:=Type:TypeA, B, C:UR:relation AH:PER RR':relation BH0:PER R'x, y, z:A -> BH1:(R ==> R') x yH2:(R ==> R') y zx0, y0:AH3:R x0 y0H4:R x0 x0R' (x x0) (z y0)
The complement of a relation conserves its proper elements.
Definition complement_proper `(mR : Proper (A -> A -> Prop) (RA ==> RA ==> iff) R) : Proper (RA ==> RA ==> iff) (complement R) := _.U:=Type:TypeA, B, C:URA:relation AR:A -> A -> PropmR:Proper (RA ==> RA ==> iff) Rx, y:AH:RA x yx0, y0:AH0:RA x0 y0complement R x x0 <-> complement R y y0U:=Type:TypeA, B, C:URA:relation AR:A -> A -> PropmR:Proper (RA ==> RA ==> iff) Rx, y:AH:RA x yx0, y0:AH0:RA x0 y0complement R x x0 <-> complement R y y0U:=Type:TypeA, B, C:URA:relation AR:A -> A -> PropmR:Proper (RA ==> RA ==> iff) Rx, y:AH:RA x yx0, y0:AH0:RA x0 y0(R x x0 -> False) <-> (R y y0 -> False)intuition. Qed.U:=Type:TypeA, B, C:URA:relation AR:A -> A -> PropmR:Proper (RA ==> RA ==> iff) Rx, y:AH:RA x yx0, y0:AH0:RA x0 y0i:=mR x y H x0 y0 H0:R x x0 <-> R y y0(R x x0 -> False) <-> (R y y0 -> False)
The flip too, actually the flip instance is a bit more general.
Definition flip_proper `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) : Proper (RB ==> RA ==> RC) (flip f) := _.U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cf:A -> B -> Cmor:Proper (RA ==> RB ==> RC) fx, y:BH:RB x yx0, y0:AH0:RA x0 y0RC (f x0 x) (f y0 y)apply mor ; auto. Qed.U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cf:A -> B -> Cmor:Proper (RA ==> RB ==> RC) fx, y:BH:RB x yx0, y0:AH0:RA x0 y0RC (f x0 x) (f y0 y)
Every Transitive relation gives rise to a binary morphism on impl,
contravariant in the first argument, covariant in the second.
Global Program Instance trans_contra_co_morphism `(Transitive A R) : Proper (R --> R ++> impl) R.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, y:AH0:R y xx0, y0:AH1:R x0 y0H2:R x x0R y y0U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, y:AH0:R y xx0, y0:AH1:R x0 y0H2:R x x0R y y0transitivity x0... Qed.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, y:AH0:R y xx0, y0:AH1:R x0 y0H2:R x x0R x y0
Proper declarations for partial applications.
Global Program Instance trans_contra_inv_impl_morphism `(Transitive A R) : Proper (R --> flip impl) (R x) | 3.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, x0, y:AH0:R y x0H1:R x yR x x0transitivity y... Qed. Global Program Instance trans_co_impl_morphism `(Transitive A R) : Proper (R ++> impl) (R x) | 3.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, x0, y:AH0:R y x0H1:R x yR x x0U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, x0, y:AH0:R x0 yH1:R x x0R x ytransitivity x0... Qed. Global Program Instance trans_sym_co_inv_impl_morphism `(PER A R) : Proper (R ++> flip impl) (R x) | 3.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, x0, y:AH0:R x0 yH1:R x x0R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yH1:R x yR x x0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yH1:R x yR x x0symmetry... Qed. Instance trans_sym_contra_impl_morphism `(PER A R) : Proper (R --> impl) (R x) | 3.U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yH1:R x yR y x0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R y x0H1:R x x0R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R y x0H1:R x x0R x ysymmetry... Qed. Instance per_partial_app_morphism `(PER A R) : Proper (R ==> iff) (R x) | 2.U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R y x0H1:R x x0R x0 yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x x0 <-> R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x x0 <-> R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x x0 -> R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x y -> R x x0intros ; transitivity x0...U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x x0 -> R x yU:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yR x y -> R x x0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yH1:R x yR x x0symmetry... Qed.U:=Type:TypeA, B, C:UR:relation AH:PER Rx, x0, y:AH0:R x0 yH1:R x yR y x0
Every Transitive relation induces a morphism by "pushing" an R x y on the left of an R x z proof to get an R y z goal.
Global Program Instance trans_co_eq_inv_impl_morphism `(Transitive A R) : Proper (R ==> (@eq A) ==> flip impl) R | 2.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, y:AH0:R x yy0:AH2:R y y0R x y0transitivity y... Qed.U:=Type:TypeA, B, C:UR:relation AH:Transitive Rx, y:AH0:R x yy0:AH2:R y y0R x y0
Every Symmetric and Transitive relation gives rise to an equivariant morphism.
Global Program Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1.U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0R x x0 <-> R y y0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0R x x0 <-> R y y0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R x x0R y y0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R y y0R x x0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R x x0R y y0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R x x0R y x0symmetry...U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R x x0R y xU:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R y y0R x x0U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R y y0R y x0symmetry... Qed.U:=Type:TypeA, B, C:UR:relation AH:PER Rx, y:AH0:R x yx0, y0:AH1:R x0 y0H2:R y y0R y0 x0U:=Type:TypeA, B, C:UR:relation AH:Symmetric Rrelation_equivalence R (flip R)firstorder. Qed. Instance compose_proper RA RB RC : Proper ((RB ==> RC) ==> (RA ==> RB) ==> (RA ==> RC)) (@compose A B C).U:=Type:TypeA, B, C:UR:relation AH:Symmetric Rrelation_equivalence R (flip R)U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RC (compose x x0 x1) (compose y y0 y1)U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RC (compose x x0 x1) (compose y y0 y1)U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RC (compose x x0 x1) (compose y y0 y1)U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RC (x (x0 x1)) (y (y0 y1))U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RB (x0 x1) (y0 y1)apply H1. Qed.U:=Type:TypeA, B, C:URA:relation ARB:relation BRC:relation Cx, y:B -> CH:(RB ==> RC) x yx0, y0:A -> BH0:(RA ==> RB) x0 y0x1, y1:AH1:RA x1 y1RA x1 y1
Coq functions are morphisms for Leibniz equality,
applied only if really needed.
U:=Type:TypeA, B, C:UR':relation BH:Reflexive R'Reflexive (eq ==> R')simpl_relation. Qed.U:=Type:TypeA, B, C:UR':relation BH:Reflexive R'Reflexive (eq ==> R')
respectful is a morphism for relation equivalence.
U:=Type:TypeA, B, C:UProper (relation_equivalence ==> relation_equivalence ==> relation_equivalence) respectfulU:=Type:TypeA, B, C:UProper (relation_equivalence ==> relation_equivalence ==> relation_equivalence) respectfulU:=Type:TypeA, B, C:Ux, y:relation AH:relation_equivalence x yx0, y0:relation BH0:relation_equivalence x0 y0x1, x2:A -> B(x ==> x0) x1 x2 <-> (y ==> y0) x1 x2U:=Type:TypeA, B, C:Ux, y:relation AH:forall x3 x4 : A, x x3 x4 <-> y x3 x4x0, y0:relation BH0:forall x3 x4 : B, x0 x3 x4 <-> y0 x3 x4x1, x2:A -> B(forall x3 y1 : A, x x3 y1 -> x0 (x1 x3) (x2 y1)) <-> (forall x3 y1 : A, y x3 y1 -> y0 (x1 x3) (x2 y1))U:=Type:TypeA, B, C:Ux, y:relation AH:forall x4 x5 : A, x x4 x5 <-> y x4 x5x0, y0:relation BH0:forall x4 x5 : B, x0 x4 x5 <-> y0 x4 x5x1, x2:A -> BH1:forall x4 y2 : A, x x4 y2 -> x0 (x1 x4) (x2 y2)x3, y1:AH2:y x3 y1y0 (x1 x3) (x2 y1)U:=Type:TypeA, B, C:Ux, y:relation AH:forall x4 x5 : A, x x4 x5 <-> y x4 x5x0, y0:relation BH0:forall x4 x5 : B, x0 x4 x5 <-> y0 x4 x5x1, x2:A -> BH1:forall x4 y2 : A, y x4 y2 -> y0 (x1 x4) (x2 y2)x3, y1:AH2:x x3 y1x0 (x1 x3) (x2 y1)U:=Type:TypeA, B, C:Ux, y:relation AH:forall x4 x5 : A, x x4 x5 <-> y x4 x5x0, y0:relation BH0:forall x4 x5 : B, x0 x4 x5 <-> y0 x4 x5x1, x2:A -> BH1:forall x4 y2 : A, x x4 y2 -> x0 (x1 x4) (x2 y2)x3, y1:AH2:y x3 y1y0 (x1 x3) (x2 y1)apply H1. rewrite H. assumption. - rewrite H0. apply H1. rewrite <- H. assumption. Qed.Tactic failure: Setoid library not loaded.
R is Reflexive, hence we can build the needed proof.
U:=Type:TypeA, B, C:UR:relation AR':relation Bm:A -> BH:Proper (R ==> R') mx:AH0:ProperProxy R xProper R' (m x)simpl_relation. Qed.U:=Type:TypeA, B, C:UR:relation AR':relation Bm:A -> BH:Proper (R ==> R') mx:AH0:ProperProxy R xProper R' (m x)U:=Type:TypeA, B, C:UR:relation AR':relation Brelation_equivalence (flip (R ==> R')) (R --> flip R')U:=Type:TypeA, B, C:UR:relation AR':relation Brelation_equivalence (flip (R ==> R')) (R --> flip R')U:=Type:TypeA, B, C:UR:relation AR':relation Brelation_equivalence (flip (R ==> R')) (R --> flip R')split ; intros ; intuition. Qed.U:=Type:TypeA, B, C:UR:relation AR':relation Brelation_equivalence (fun x y : A -> B => forall x0 y0 : A, R x0 y0 -> R' (y x0) (x y0)) (fun f g : A -> B => forall x y : A, R y x -> R' (g y) (f x))
Treating flip: can't make them direct instances as we
need at least a flip present in the goal.
U:=Type:TypeA, B, C:UR', R:relation AH:subrelation R' Rsubrelation (flip (flip R')) Rfirstorder. Qed.U:=Type:TypeA, B, C:UR', R:relation AH:subrelation R' Rsubrelation (flip (flip R')) RU:=Type:TypeA, B, C:UR, R':relation AH:subrelation R R'subrelation R (flip (flip R'))firstorder. Qed.U:=Type:TypeA, B, C:UR, R':relation AH:subrelation R R'subrelation R (flip (flip R'))
That's if and only if
U:=Type:TypeA, B, C:UR:relation AH:Reflexive Rsubrelation eq Rsimpl_relation. Qed.U:=Type:TypeA, B, C:UR:relation AH:Reflexive Rsubrelation eq R
Once we have normalized, we will apply this instance to simplify the problem.
Definition proper_flip_proper `(mor : Proper A R m) : Proper (flip R) m := mor.
Every reflexive relation gives rise to a morphism,
only for immediately solving goals without variables.
U:=Type:TypeA, B, C:UR:relation AH:Reflexive Rx:AProper R xfirstorder. Qed.U:=Type:TypeA, B, C:UR:relation AH:Reflexive Rx:AProper R xU:=Type:TypeA, B, C:Ux:AProper eq xU:=Type:TypeA, B, C:Ux:AProper eq xapply reflexive_proper. Qed. End GenericInstances. Class PartialApplication. CoInductive normalization_done : Prop := did_normalization. Class Params {A : Type} (of : A) (arity : nat). Ltac partial_application_tactic := let rec do_partial_apps H m cont := match m with | ?m' ?x => class_apply @Reflexive_partial_app_morphism ; [(do_partial_apps H m' ltac:(idtac))|clear H] | _ => cont end in let rec do_partial H ar m := lazymatch ar with | 0%nat => do_partial_apps H m ltac:(fail 1) | S ?n' => match m with ?m' ?x => do_partial H n' m' end end in let params m sk fk := (let m' := fresh in head_of_constr m' m ; let n := fresh in evar (n:nat) ; let v := eval compute in n in clear n ; let H := fresh in assert(H:Params m' v) by (subst m'; once typeclasses eauto) ; let v' := eval compute in v in subst m'; (sk H v' || fail 1)) || fk in let on_morphism m cont := params m ltac:(fun H n => do_partial H n m) ltac:(cont) in match goal with | [ _ : normalization_done |- _ ] => fail 1 | [ _ : @Params _ _ _ |- _ ] => fail 1 | [ |- @Proper ?T _ (?m ?x) ] => match goal with | [ H : PartialApplication |- _ ] => class_apply @Reflexive_partial_app_morphism; [|clear H] | _ => on_morphism (m x) ltac:(class_apply @Reflexive_partial_app_morphism) end end.U:=Type:TypeA, B, C:Ux:AProper eq x
Bootstrap !!!
forall A : Type, Proper (relation_equivalence ==> eq ==> iff) Properforall A : Type, Proper (relation_equivalence ==> eq ==> iff) ProperA:Typex, y:relation AH:relation_equivalence x yy0:AProper x y0 <-> Proper y y0A:Typex, y:relation AH:forall x0 x1 : A, x x0 x1 <-> y x0 x1y0:AProper x y0 <-> Proper y y0A:Typex, y:relation AH:forall x0 x1 : A, x x0 x1 <-> y x0 x1y0:AH0:Proper x y0y y0 y0A:Typex, y:relation AH:forall x0 x1 : A, x x0 x1 <-> y x0 x1y0:AH0:Proper y y0x y0 y0A:Typex, y:relation AH:forall x0 x1 : A, x x0 x1 <-> y x0 x1y0:AH0:Proper x y0y y0 y0apply H0. - setoid_rewrite H. apply H0. Qed. Ltac proper_reflexive := match goal with | [ _ : normalization_done |- _ ] => fail 1 | _ => class_apply proper_eq || class_apply @reflexive_proper end. Hint Extern 1 (subrelation (flip _) _) => class_apply @flip1 : typeclass_instances. Hint Extern 1 (subrelation _ (flip _)) => class_apply @flip2 : typeclass_instances. Hint Extern 1 (Proper _ (complement _)) => apply @complement_proper : typeclass_instances. Hint Extern 1 (Proper _ (flip _)) => apply @flip_proper : typeclass_instances. Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_flip_proper : typeclass_instances. Hint Extern 4 (@Proper _ _ _) => partial_application_tactic : typeclass_instances. Hint Extern 7 (@Proper _ _ _) => proper_reflexive : typeclass_instances.Tactic failure: Setoid library not loaded.
Special-purpose class to do normalization of signatures w.r.t. flip.
Section Normalize. Context (A : Type). Class Normalizes (m : relation A) (m' : relation A) : Prop := normalizes : relation_equivalence m m'.
Current strategy: add flip everywhere and reduce using subrelation
afterwards.
Lemma proper_normalizes_proper `(Normalizes R0 R1, Proper A R1 m) : Proper R0 m.
Proof.
red in H, H0.
rewrite H.
assumption.
Qed.
Lemma flip_atom R : Normalizes R (flip (flip R)).
Proof.
firstorder.
Qed.
End Normalize.
Lemma flip_arrow {A : Type} {B : Type}
`(NA : Normalizes A R (flip R'''), NB : Normalizes B R' (flip R'')) :
Normalizes (A -> B) (R ==> R') (flip (R''' ==> R'')%signature).
Proof.
unfold Normalizes in *. intros.
unfold relation_equivalence in *.
unfold predicate_equivalence in *. simpl in *.
unfold respectful. unfold flip in *. firstorder.
- apply NB. apply H. apply NA. apply H0.
- apply NB. apply H. apply NA. apply H0.
Qed.
Ltac normalizes :=
match goal with
| [ |- Normalizes _ (respectful _ _) _ ] => class_apply @flip_arrow
| _ => class_apply @flip_atom
end.
Ltac proper_normalization :=
match goal with
| [ _ : normalization_done |- _ ] => fail 1
| [ _ : apply_subrelation |- @Proper _ ?R _ ] =>
let H := fresh "H" in
set(H:=did_normalization) ; class_apply @proper_normalizes_proper
end.
Hint Extern 1 (Normalizes _ _ _) => normalizes : typeclass_instances.
Hint Extern 6 (@Proper _ _ _) => proper_normalization
: typeclass_instances.
When the relation on the domain is symmetric, we can
flip the relation on the codomain. Same for binary functions.
Lemma proper_sym_flip :
forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f),
Proper (R1==>flip R2) f.
Proof.
intros A R1 Sym B R2 f Hf.
intros x x' Hxx'. apply Hf, Sym, Hxx'.
Qed.
Lemma proper_sym_flip_2 :
forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f),
Proper (R1==>R2==>flip R3) f.
Proof.
intros A R1 Sym1 B R2 Sym2 C R3 f Hf.
intros x x' Hxx' y y' Hyy'. apply Hf; auto.
Qed.
When the relation on the domain is symmetric, a predicate is
compatible with iff as soon as it is compatible with impl.
Same with a binary relation.
Lemma proper_sym_impl_iff : forall `(Symmetric A R)`(Proper _ (R==>impl) f),
Proper (R==>iff) f.
Proof.
intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto.
Qed.
Lemma proper_sym_impl_iff_2 :
forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f),
Proper (R==>R'==>iff) f.
Proof.
intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'.
repeat red in Hf. split; eauto.
Qed.
A PartialOrder is compatible with its underlying equivalence.
Instance PartialOrder_proper `(PartialOrder A eqA R) :
Proper (eqA==>eqA==>iff) R.
Proof.
intros.
apply proper_sym_impl_iff_2; auto with *.
intros x x' Hx y y' Hy Hr.
transitivity x.
- generalize (partial_order_equivalence x x'); compute; intuition.
- transitivity y; auto.
generalize (partial_order_equivalence y y'); compute; intuition.
Qed.
From a PartialOrder to the corresponding StrictOrder:
lt = le ∧ ¬eq.
If the order is total, we could also say gt = ¬le.
Lemma PartialOrder_StrictOrder `(PartialOrder A eqA R) :
StrictOrder (relation_conjunction R (complement eqA)).
Proof.
split; compute.
- intros x (_,Hx). apply Hx, Equivalence_Reflexive.
- intros x y z (Hxy,Hxy') (Hyz,Hyz'). split.
+ apply PreOrder_Transitive with y; assumption.
+ intro Hxz.
apply Hxy'.
apply partial_order_antisym; auto.
rewrite Hxz; auto.
Qed.
From a StrictOrder to the corresponding PartialOrder:
le = lt ∨ eq.
If the order is total, we could also say ge = ¬lt.
Lemma StrictOrder_PreOrder
`(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
PreOrder (relation_disjunction R eqA).
Proof.
split.
- intros x. right. reflexivity.
- intros x y z [Hxy|Hxy] [Hyz|Hyz].
+ left. transitivity y; auto.
+ left. rewrite <- Hyz; auto.
+ left. rewrite Hxy; auto.
+ right. transitivity y; auto.
Qed.
Hint Extern 4 (PreOrder (relation_disjunction _ _)) =>
class_apply StrictOrder_PreOrder : typeclass_instances.
Lemma StrictOrder_PartialOrder
`(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) :
PartialOrder eqA (relation_disjunction R eqA).
Proof.
intros. intros x y. compute. intuition.
elim (StrictOrder_Irreflexive x).
transitivity y; auto.
Qed.
Hint Extern 4 (StrictOrder (relation_conjunction _ _)) =>
class_apply PartialOrder_StrictOrder : typeclass_instances.
Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) =>
class_apply StrictOrder_PartialOrder : typeclass_instances.