Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Typeclass-based relations, tactics and standard instances

This is the basic theory needed to formalize morphisms and setoids.
Author: Matthieu Sozeau Institution: LRI, CNRS UMR 8623 - University Paris Sud
Require Export Coq.Classes.Init.
Require Import Coq.Program.Basics.
Require Import Coq.Program.Tactics.
Require Import Coq.Relations.Relation_Definitions.

Generalizable Variables A B C D R S T U l eqA eqB eqC eqD.
We allow to unfold the relation definition while doing morphism search.
Section Defs.
  Context {A : Type}.
We rebind relational properties in separate classes to be able to overload each proof.
  Class Reflexive (R : relation A) :=
    reflexivity : forall x : A, R x x.

  Definition complement (R : relation A) : relation A := fun x y => R x y -> False.
Opaque for proof-search.
  Typeclasses Opaque complement.
These are convertible.
  
A:Type
R:A -> A -> Prop

complement (flip R) = flip (complement R)
A:Type
R:A -> A -> Prop

complement (flip R) = flip (complement R)
reflexivity. Qed. Class Irreflexive (R : relation A) := irreflexivity : Reflexive (complement R). Class Symmetric (R : relation A) := symmetry : forall {x y}, R x y -> R y x. Class Asymmetric (R : relation A) := asymmetry : forall {x y}, R x y -> R y x -> False. Class Transitive (R : relation A) := transitivity : forall {x y z}, R x y -> R y z -> R x z.
Various combinations of reflexivity, symmetry and transitivity.
  
A PreOrder is both Reflexive and Transitive.
  Class PreOrder (R : relation A) : Prop := {
    PreOrder_Reflexive :> Reflexive R | 2 ;
    PreOrder_Transitive :> Transitive R | 2 }.
A StrictOrder is both Irreflexive and Transitive.
  Class StrictOrder (R : relation A) : Prop := {
    StrictOrder_Irreflexive :> Irreflexive R ;
    StrictOrder_Transitive :> Transitive R }.
By definition, a strict order is also asymmetric
  
A:Type
R:relation A
H:StrictOrder R

Asymmetric R
A:Type
R:relation A
H:StrictOrder R

Asymmetric R
firstorder. Qed.
A partial equivalence relation is Symmetric and Transitive.
  Class PER (R : relation A) : Prop := {
    PER_Symmetric :> Symmetric R | 3 ;
    PER_Transitive :> Transitive R | 3 }.
Equivalence relations.
  Class Equivalence (R : relation A) : Prop := {
    Equivalence_Reflexive :> Reflexive R ;
    Equivalence_Symmetric :> Symmetric R ;
    Equivalence_Transitive :> Transitive R }.
An Equivalence is a PER plus reflexivity.
  Instance Equivalence_PER {R} `(E:Equivalence R) : PER R | 10 :=
    { }. 
An Equivalence is a PreOrder plus symmetry.
  Instance Equivalence_PreOrder {R} `(E:Equivalence R) : PreOrder R | 10 :=
    { }.
We can now define antisymmetry w.r.t. an equivalence relation on the carrier.
  Class Antisymmetric eqA `{equ : Equivalence eqA} (R : relation A) :=
    antisymmetry : forall {x y}, R x y -> R y x -> eqA x y.

  Class subrelation (R R' : relation A) : Prop :=
    is_subrelation : forall {x y}, R x y -> R' x y.
Any symmetric relation is equal to its inverse.
  
A:Type
R:relation A
H:Symmetric R

subrelation (flip R) R
A:Type
R:relation A
H:Symmetric R

subrelation (flip R) R
A:Type
R:relation A
H:Symmetric R

forall x y : A, flip R x y -> R x y
A:Type
R:relation A
H:Symmetric R
x, y:A
H0:flip R x y

R x y
A:Type
R:relation A
H:Symmetric R
x, y:A
H0:R y x

R x y
A:Type
R:relation A
H:Symmetric R
x, y:A
H0:R y x

R y x
assumption. Qed. Section flip.
A:Type
R:relation A
H:Reflexive R

Reflexive (flip R)
A:Type
R:relation A
H:Reflexive R

Reflexive (flip R)
tauto. Qed. Definition flip_Irreflexive `(Irreflexive R) : Irreflexive (flip R) := irreflexivity (R:=R). Definition flip_Symmetric `(Symmetric R) : Symmetric (flip R) := fun x y H => symmetry (R:=R) H. Definition flip_Asymmetric `(Asymmetric R) : Asymmetric (flip R) := fun x y H H' => asymmetry (R:=R) H H'. Definition flip_Transitive `(Transitive R) : Transitive (flip R) := fun x y z H H' => transitivity (R:=R) H' H.
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
H:Antisymmetric eqA R

Antisymmetric eqA (flip R)
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
H:Antisymmetric eqA R

Antisymmetric eqA (flip R)
firstorder. Qed.
Inversing the larger structures
    
A:Type
R:relation A
H:PreOrder R

PreOrder (flip R)
A:Type
R:relation A
H:PreOrder R

PreOrder (flip R)
firstorder. Qed.
A:Type
R:relation A
H:StrictOrder R

StrictOrder (flip R)
A:Type
R:relation A
H:StrictOrder R

StrictOrder (flip R)
firstorder. Qed.
A:Type
R:relation A
H:PER R

PER (flip R)
A:Type
R:relation A
H:PER R

PER (flip R)
firstorder. Qed.
A:Type
R:relation A
H:Equivalence R

Equivalence (flip R)
A:Type
R:relation A
H:Equivalence R

Equivalence (flip R)
firstorder. Qed. End flip. Section complement.
A:Type
R:relation A
H:Reflexive R

Irreflexive (complement R)
A:Type
R:relation A
H:Reflexive R

Irreflexive (complement R)
firstorder. Qed.
A:Type
R:relation A
H:Symmetric R

Symmetric (complement R)
A:Type
R:relation A
H:Symmetric R

Symmetric (complement R)
firstorder. Qed. End complement.
Rewrite relation on a given support: declares a relation as a rewrite relation for use by the generalized rewriting tactic. It helps choosing if a rewrite should be handled by the generalized or the regular rewriting tactic using leibniz equality. Users can declare an RewriteRelation A RA anywhere to declare default relations. This is also done automatically by the Declare Relation A RA commands.
  Class RewriteRelation (RA : relation A).
Any Equivalence declared in the context is automatically considered a rewrite relation.
  Instance equivalence_rewrite_relation `(Equivalence eqA) : RewriteRelation eqA.
  Defined.
Leibniz equality.
  Section Leibniz.
    Instance eq_Reflexive : Reflexive (@eq A) := @eq_refl A.
    Instance eq_Symmetric : Symmetric (@eq A) := @eq_sym A.
    Instance eq_Transitive : Transitive (@eq A) := @eq_trans A.
Leibinz equality eq is an equivalence relation. The instance has low priority as it is always applicable if only the type is constrained.
    Instance eq_equivalence : Equivalence (@eq A) | 10.
  End Leibniz.
  
End Defs.
Default rewrite relations handled by setoid_rewrite.
Instance: RewriteRelation impl.
Defined.
Instance: RewriteRelation iff.
Defined.
Hints to drive the typeclass resolution avoiding loops due to the use of full unification.
Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances.
Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances.
Hint Extern 3 (Irreflexive (complement _)) => class_apply complement_Irreflexive : typeclass_instances.

Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances.
Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances.
Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances.
Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances.
Hint Extern 3 (Antisymmetric (flip _)) => class_apply flip_Antisymmetric : typeclass_instances.
Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances.
Hint Extern 3 (StrictOrder (flip _)) => class_apply flip_StrictOrder : typeclass_instances.
Hint Extern 3 (PreOrder (flip _)) => class_apply flip_PreOrder : typeclass_instances.

Hint Extern 4 (subrelation (flip _) _) => 
  class_apply @subrelation_symmetric : typeclass_instances.

Arguments irreflexivity {A R Irreflexive} [x] _.
Arguments symmetry {A} {R} {_} [x] [y] _.
Arguments asymmetry {A} {R} {_} [x] [y] _ _.
Arguments transitivity {A} {R} {_} [x] [y] [z] _ _.
Arguments Antisymmetric A eqA {_} _.

Hint Resolve irreflexivity : ord.

Unset Implicit Arguments.
A HintDb for relations.
Ltac solve_relation :=
  match goal with
  | [ |- ?R ?x ?x ] => reflexivity
  | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H
  end.

Hint Extern 4 => solve_relation : relations.
We can already dualize all these properties.

Standard instances.

Ltac reduce_hyp H :=
  match type of H with
    | context [ _ <-> _ ] => fail 1
    | _ => red in H ; try reduce_hyp H
  end.

Ltac reduce_goal :=
  match goal with
    | [ |- _ <-> _ ] => fail 1
    | _ => red ; intros ; try reduce_goal
  end.

Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid.

Ltac reduce := reduce_goal.

Tactic Notation "apply" "*" constr(t) :=
  first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) |
    refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ].

Ltac simpl_relation :=
  unfold flip, impl, arrow ; try reduce ; program_simpl ;
    try ( solve [ dintuition ]).

Local Obligation Tactic := simpl_relation.
Logical implication.
Instance impl_Reflexive : Reflexive impl.
Instance impl_Transitive : Transitive impl.
Logical equivalence.
Instance iff_Reflexive : Reflexive iff := iff_refl.
Instance iff_Symmetric : Symmetric iff := iff_sym.
Instance iff_Transitive : Transitive iff := iff_trans.
Logical equivalence iff is an equivalence relation.
Instance iff_equivalence : Equivalence iff.
We now develop a generalization of results on relations for arbitrary predicates. The resulting theory can be applied to homogeneous binary relations but also to arbitrary n-ary predicates.
Local Open Scope list_scope.
A compact representation of non-dependent arities, with the codomain singled-out.
(* Note, we do not use [list Type] because it imposes unnecessary universe constraints *)
Inductive Tlist : Type := Tnil : Tlist | Tcons : Type -> Tlist -> Tlist.
Local Infix "::" := Tcons.

Fixpoint arrows (l : Tlist) (r : Type) : Type :=
  match l with
    | Tnil => r
    | A :: l' => A -> arrows l' r
  end.
We can define abbreviations for operation and relation types based on arrows.
Definition unary_operation A := arrows (A::Tnil) A.
Definition binary_operation A := arrows (A::A::Tnil) A.
Definition ternary_operation A := arrows (A::A::A::Tnil) A.
We define n-ary predicates as functions into Prop.
Notation predicate l := (arrows l Prop).
Unary predicates, or sets.
Definition unary_predicate A := predicate (A::Tnil).
Homogeneous binary relations, equivalent to relation A.
Definition binary_relation A := predicate (A::A::Tnil).
We can close a predicate by universal or existential quantification.
Fixpoint predicate_all (l : Tlist) : predicate l -> Prop :=
  match l with
    | Tnil => fun f => f
    | A :: tl => fun f => forall x : A, predicate_all tl (f x)
  end.

Fixpoint predicate_exists (l : Tlist) : predicate l -> Prop :=
  match l with
    | Tnil => fun f => f
    | A :: tl => fun f => exists x : A, predicate_exists tl (f x)
  end.
Pointwise extension of a binary operation on T to a binary operation on functions whose codomain is T. For an operator on Prop this lifts the operator to a binary operation.
Fixpoint pointwise_extension {T : Type} (op : binary_operation T)
  (l : Tlist) : binary_operation (arrows l T) :=
  match l with
    | Tnil => fun R R' => op R R'
    | A :: tl => fun R R' =>
      fun x => pointwise_extension op tl (R x) (R' x)
  end.
Pointwise lifting, equivalent to doing pointwise_extension and closing using predicate_all.
Fixpoint pointwise_lifting (op : binary_relation Prop)  (l : Tlist) : binary_relation (predicate l) :=
  match l with
    | Tnil => fun R R' => op R R'
    | A :: tl => fun R R' =>
      forall x, pointwise_lifting op tl (R x) (R' x)
  end.
The n-ary equivalence relation, defined by lifting the 0-ary iff relation.
Definition predicate_equivalence {l : Tlist} : binary_relation (predicate l) :=
  pointwise_lifting iff l.
The n-ary implication relation, defined by lifting the 0-ary impl relation.
Definition predicate_implication {l : Tlist} :=
  pointwise_lifting impl l.
Notations for pointwise equivalence and implication of predicates.
Declare Scope predicate_scope.

Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope.
Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope.

Local Open Scope predicate_scope.
The pointwise liftings of conjunction and disjunctions. Note that these are binary_operations, building new relations out of old ones.
Definition predicate_intersection := pointwise_extension and.
Definition predicate_union := pointwise_extension or.

Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope.
Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope.
The always True and always False predicates.
Fixpoint true_predicate {l : Tlist} : predicate l :=
  match l with
    | Tnil => True
    | A :: tl => fun _ => @true_predicate tl
  end.

Fixpoint false_predicate {l : Tlist} : predicate l :=
  match l with
    | Tnil => False
    | A :: tl => fun _ => @false_predicate tl
  end.

Notation "∙⊤∙" := true_predicate : predicate_scope.
Notation "∙⊥∙" := false_predicate : predicate_scope.
Predicate equivalence is an equivalence, and predicate implication defines a preorder.
Instance predicate_equivalence_equivalence : 
  Equivalence (@predicate_equivalence l).

  
l:Tlist
x:predicate l

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) iff l x x
induction l ; firstorder. Qed.
l:Tlist
x, y:predicate l
H:x <∙> y

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) iff l y x
induction l ; firstorder. Qed.
l:Tlist
x, y, z:predicate l
H:x <∙> y
H0:y <∙> z

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) iff l x z
l:Tlist
x, y, z:predicate l
H:x <∙> y
H0:y <∙> z

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) iff l x z
x, y, z:predicate Tnil
H:x <∙> y
H0:y <∙> z

x <-> z
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:x <∙> y
H0:y <∙> z
IHl:forall x0 y0 z0 : predicate l, x0 <∙> y0 -> y0 <∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l x0 z0
forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)
x, y, z:predicate Tnil
H:x <∙> y
H0:y <∙> z

x <-> z
firstorder.
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:x <∙> y
H0:y <∙> z
IHl:forall x0 y0 z0 : predicate l, x0 <∙> y0 -> y0 <∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l x0 z0

forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:x <∙> y
H0:y <∙> z
IHl:forall x1 y0 z0 : predicate l, x1 <∙> y0 -> y0 <∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x2 : A, pointwise_lifting op tl (R x2) (R' x2) end) iff l x1 z0
x0:T

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:T -> predicate l
H:x <∙> y
H0:y <∙> z
IHl:forall x1 y0 z0 : predicate l, x1 <∙> y0 -> y0 <∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x2 : A, pointwise_lifting op tl (R x2) (R' x2) end) iff l x1 z0
x0:T

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:T -> predicate l
H:x <∙> y
H0:y <∙> z
IHl:forall x1 y0 z0 : predicate l, x1 <∙> y0 -> y0 <∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x2 : A, pointwise_lifting op tl (R x2) (R' x2) end) iff l x1 z0
x0:T
p:=IHl (x x0) (y x0) (z x0):x x0 <∙> y x0 -> y x0 <∙> z x0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) iff l (x x0) (z x0)
firstorder. Qed. Instance predicate_implication_preorder : PreOrder (@predicate_implication l).
l:Tlist
x:predicate l

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) impl l x x
induction l ; firstorder. Qed.
l:Tlist
x, y, z:predicate l
H:x -∙> y
H0:y -∙> z

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x0 : A, pointwise_lifting op tl (R x0) (R' x0) end) impl l x z
x, y, z:predicate Tnil
H:x -∙> y
H0:y -∙> z

impl x z
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:x -∙> y
H0:y -∙> z
IHl:forall x0 y0 z0 : predicate l, x0 -∙> y0 -> y0 -∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l x0 z0
forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
x, y, z:predicate Tnil
H:x -∙> y
H0:y -∙> z

impl x z
firstorder.
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:x -∙> y
H0:y -∙> z
IHl:forall x0 y0 z0 : predicate l, x0 -∙> y0 -> y0 -∙> z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l x0 z0

forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:predicate (T :: l)
H:pointwise_lifting impl (T :: l) x y
H0:pointwise_lifting impl (T :: l) y z
IHl:forall x0 y0 z0 : predicate l, pointwise_lifting impl l x0 y0 -> pointwise_lifting impl l y0 z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l x0 z0

forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:T -> predicate l
H:forall x0 : T, pointwise_lifting impl l (x x0) (y x0)
H0:forall x0 : T, pointwise_lifting impl l (y x0) (z x0)
IHl:forall x0 y0 z0 : predicate l, pointwise_lifting impl l x0 y0 -> pointwise_lifting impl l y0 z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l x0 z0

forall x0 : T, (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:T -> predicate l
H:forall x1 : T, pointwise_lifting impl l (x x1) (y x1)
H0:forall x1 : T, pointwise_lifting impl l (y x1) (z x1)
IHl:forall x1 y0 z0 : predicate l, pointwise_lifting impl l x1 y0 -> pointwise_lifting impl l y0 z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x2 : A, pointwise_lifting op tl (R x2) (R' x2) end) impl l x1 z0
x0:T

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
T:Type
l:Tlist
x, y, z:T -> predicate l
H:forall x1 : T, pointwise_lifting impl l (x x1) (y x1)
H0:forall x1 : T, pointwise_lifting impl l (y x1) (z x1)
IHl:forall x1 y0 z0 : predicate l, pointwise_lifting impl l x1 y0 -> pointwise_lifting impl l y0 z0 -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x2 : A, pointwise_lifting op tl (R x2) (R' x2) end) impl l x1 z0
x0:T
p:=IHl (x x0) (y x0) (z x0):pointwise_lifting impl l (x x0) (y x0) -> pointwise_lifting impl l (y x0) (z x0) -> (fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)

(fix pointwise_lifting (op : binary_relation Prop) (l0 : Tlist) {struct l0} : binary_relation (predicate l0) := match l0 as l1 return (binary_relation (predicate l1)) with | Tnil => fun R R' : Prop => op R R' | A :: tl => fun R R' : A -> predicate tl => forall x1 : A, pointwise_lifting op tl (R x1) (R' x1) end) impl l (x x0) (z x0)
firstorder. Qed.
We define the various operations which define the algebra on binary relations, from the general ones.
Section Binary.
  Context {A : Type}.

  Definition relation_equivalence : relation (relation A) :=
    @predicate_equivalence (_::_::Tnil).

  Global Instance: RewriteRelation relation_equivalence.
  Defined.
  
  Definition relation_conjunction (R : relation A) (R' : relation A) : relation A :=
    @predicate_intersection (A::A::Tnil) R R'.

  Definition relation_disjunction (R : relation A) (R' : relation A) : relation A :=
    @predicate_union (A::A::Tnil) R R'.
Relation equivalence is an equivalence, and subrelation defines a partial order.
  
A:Type

Equivalence relation_equivalence
A:Type

Equivalence relation_equivalence
exact (@predicate_equivalence_equivalence (A::A::Tnil)). Qed.
A:Type

PreOrder subrelation
A:Type

PreOrder subrelation
exact (@predicate_implication_preorder (A::A::Tnil)). Qed.

Partial Order.

A partial order is a preorder which is additionally antisymmetric. We give an equivalent definition, up-to an equivalence relation on the carrier.
  Class PartialOrder eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} :=
    partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (flip R)).
The equivalence proof is sufficient for proving that R must be a morphism for equivalence (see Morphisms). It is also sufficient to show that R is antisymmetric w.r.t. eqA
  
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R

Antisymmetric A eqA R
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R

Antisymmetric A eqA R
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R
x, y:A
H0:R x y
H1:R y x

eqA x y
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R
x, y:A
H0:R x y
H1:R y x
poe:relation_equivalence eqA (relation_conjunction R (flip R))

eqA x y
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R
x, y:A
H0:R x y
H1:R y x
poe:forall x0 x1 : A, eqA x0 x1 <-> relation_conjunction R (flip R) x0 x1

eqA x y
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R
x, y:A
H0:R x y
H1:R y x
poe:forall x0 x1 : A, eqA x0 x1 <-> relation_conjunction R (flip R) x0 x1

relation_conjunction R (flip R) x y
firstorder. Qed.
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R

PartialOrder eqA (flip R)
A:Type
eqA:relation A
equ:Equivalence eqA
R:relation A
preo:PreOrder R
H:PartialOrder eqA R

PartialOrder eqA (flip R)
firstorder. Qed. End Binary. Hint Extern 3 (PartialOrder (flip _)) => class_apply PartialOrder_inverse : typeclass_instances.
The partial order defined by subrelation and relation equivalence.
Instance subrelation_partial_order :
  ! PartialOrder (relation A) relation_equivalence subrelation.

A:Type
x, x0:relation A

relation_equivalence x x0 <-> relation_conjunction subrelation (fun x1 y : relation A => subrelation y x1) x x0
A:Type
x, x0:relation A

relation_equivalence x x0 <-> relation_conjunction subrelation (fun x1 y : relation A => subrelation y x1) x x0
A:Type
x, x0:relation A

(x <∙> x0) <-> relation_conjunction subrelation (fun x1 y : relation A => subrelation y x1) x x0
compute; firstorder. Qed. Typeclasses Opaque arrows predicate_implication predicate_equivalence relation_equivalence pointwise_lifting.