Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
This file proposes interfaces for finite maps
Require Export Bool DecidableType OrderedType. Set Implicit Arguments. Unset Strict Implicit.
When compared with Ocaml Map, this signature has been split in
several parts :
If unsure, what you're looking for is probably S: apart from Sord,
all other signatures are subsets of S.
Some additional differences with Ocaml:
- The first parts WSfun and WS propose signatures for weak
maps, which are maps with no ordering on the key type nor the
data type. WSfun and WS are almost identical, apart from the
fact that WSfun is expressed in a functorial way whereas WS
is self-contained. For obtaining an instance of such signatures,
a decidable equality on keys in enough (see for example
FMapWeakList). These signatures contain the usual operators
(add, find, ...). The only function that asks for more is
equal, whose first argument should be a comparison on data.
- Then comes Sfun and S, that extend WSfun and WS to the
case where the key type is ordered. The main novelty is that
elements is required to produce sorted lists.
- Finally, Sord extends S with a complete comparison function. For that, the data type should have a decidable total ordering as well.
- no iter function, useless since Coq is purely functional
- option types are used instead of Not_found exceptions
- more functions are provided: elements and cardinal and map2
Definition Cmp (elt:Type)(cmp:elt->elt->bool) e1 e2 := cmp e1 e2 = true.
Weak signature for maps
Module Type WSfun (E : DecidableType). Definition key := E.t. Hint Transparent key : core. Parameter t : Type -> Type.
the abstract type of maps
Section Types. Variable elt:Type. Parameter empty : t elt.
The empty map.
Parameter is_empty : t elt -> bool.
Test whether a map is empty or not.
Parameter add : key -> elt -> t elt -> t elt.
add x y m returns a map containing the same bindings as m,
plus a binding of x to y. If x was already bound in m,
its previous binding disappears.
Parameter find : key -> t elt -> option elt.
find x m returns the current binding of x in m,
or None if no such binding exists.
Parameter remove : key -> t elt -> t elt.
remove x m returns a map containing the same bindings as m,
except for x which is unbound in the returned map.
Parameter mem : key -> t elt -> bool.
mem x m returns true if m contains a binding for x,
and false otherwise.
Variable elt' elt'' : Type. Parameter map : (elt -> elt') -> t elt -> t elt'.
map f m returns a map with same domain as m, where the associated
value a of all bindings of m has been replaced by the result of the
application of f to a. Since Coq is purely functional, the order
in which the bindings are passed to f is irrelevant.
Parameter mapi : (key -> elt -> elt') -> t elt -> t elt'.
Same as map, but the function receives as arguments both the
key and the associated value for each binding of the map.
Parameter map2 : (option elt -> option elt' -> option elt'') -> t elt -> t elt' -> t elt''.
map2 f m m' creates a new map whose bindings belong to the ones
of either m or m'. The presence and value for a key k is
determined by f e e' where e and e' are the (optional) bindings
of k in m and m'.
Parameter elements : t elt -> list (key*elt).
elements m returns an assoc list corresponding to the bindings
of m, in any order.
Parameter cardinal : t elt -> nat.
cardinal m returns the number of bindings in m.
Parameter fold : forall A: Type, (key -> elt -> A -> A) -> t elt -> A -> A.
fold f m a computes (f kN dN ... (f k1 d1 a)...),
where k1 ... kN are the keys of all bindings in m
(in any order), and d1 ... dN are the associated data.
Parameter equal : (elt -> elt -> bool) -> t elt -> t elt -> bool.
equal cmp m1 m2 tests whether the maps m1 and m2 are equal,
that is, contain equal keys and associate them with equal data.
cmp is the equality predicate used to compare the data associated
with the keys.
Section Spec. Variable m m' m'' : t elt. Variable x y z : key. Variable e e' : elt. Parameter MapsTo : key -> elt -> t elt -> Prop. Definition In (k:key)(m: t elt) : Prop := exists e:elt, MapsTo k e m. Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m. Definition eq_key (p p':key*elt) := E.eq (fst p) (fst p'). Definition eq_key_elt (p p':key*elt) := E.eq (fst p) (fst p') /\ (snd p) = (snd p').
Specification of MapsTo
Parameter MapsTo_1 : E.eq x y -> MapsTo x e m -> MapsTo y e m.
Specification of mem
Parameter mem_1 : In x m -> mem x m = true. Parameter mem_2 : mem x m = true -> In x m.
Specification of empty
Parameter empty_1 : Empty empty.
Specification of is_empty
Parameter is_empty_1 : Empty m -> is_empty m = true. Parameter is_empty_2 : is_empty m = true -> Empty m.
Specification of add
Parameter add_1 : E.eq x y -> MapsTo y e (add x e m). Parameter add_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). Parameter add_3 : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
Specification of remove
Parameter remove_1 : E.eq x y -> ~ In y (remove x m). Parameter remove_2 : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). Parameter remove_3 : MapsTo y e (remove x m) -> MapsTo y e m.
Specification of find
Parameter find_1 : MapsTo x e m -> find x m = Some e. Parameter find_2 : find x m = Some e -> MapsTo x e m.
Specification of elements
Parameter elements_1 : MapsTo x e m -> InA eq_key_elt (x,e) (elements m). Parameter elements_2 : InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
When compared with ordered maps, here comes the only
property that is really weaker:
Parameter elements_3w : NoDupA eq_key (elements m).
Specification of cardinal
Parameter cardinal_1 : cardinal m = length (elements m).
Specification of fold
Parameter fold_1 : forall (A : Type) (i : A) (f : key -> elt -> A -> A), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
Equality of maps
Caveat: there are at least three distinct equality predicates on maps.
- The simplest (and maybe most natural) way is to consider keys up to their equivalence E.eq, but elements up to Leibniz equality, in the spirit of eq_key_elt above. This leads to predicate Equal.
- Unfortunately, this Equal predicate can't be used to describe the equal function, since this function (for compatibility with ocaml) expects a boolean comparison cmp that may identify more elements than Leibniz. So logical specification of equal is done via another predicate Equivb
- This predicate Equivb is quite ad-hoc with its boolean cmp, it can be generalized in a Equiv expecting a more general (possibly non-decidable) equality predicate on elements
Definition Equal m m' := forall y, find y m = find y m'. Definition Equiv (eq_elt:elt->elt->Prop) m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e'). Definition Equivb (cmp: elt->elt->bool) := Equiv (Cmp cmp).
Specification of equal
Variable cmp : elt -> elt -> bool. Parameter equal_1 : Equivb cmp m m' -> equal cmp m m' = true. Parameter equal_2 : equal cmp m m' = true -> Equivb cmp m m'. End Spec. End Types.
Specification of map
Parameter map_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt)(f:elt->elt'), MapsTo x e m -> MapsTo x (f e) (map f m). Parameter map_2 : forall (elt elt':Type)(m: t elt)(x:key)(f:elt->elt'), In x (map f m) -> In x m.
Specification of mapi
Parameter mapi_1 : forall (elt elt':Type)(m: t elt)(x:key)(e:elt) (f:key->elt->elt'), MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Parameter mapi_2 : forall (elt elt':Type)(m: t elt)(x:key) (f:key->elt->elt'), In x (mapi f m) -> In x m.
Specification of map2
Parameter map2_1 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). Parameter map2_2 : forall (elt elt' elt'':Type)(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt''), In x (map2 f m m') -> In x m \/ In x m'. Hint Immediate MapsTo_1 mem_2 is_empty_2 map_2 mapi_2 add_3 remove_3 find_2 : map. Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1 remove_2 find_1 fold_1 map_1 mapi_1 mapi_2 : map. End WSfun.
Module Type WS. Declare Module E : DecidableType. Include WSfun E. End WS.
Module Type Sfun (E : OrderedType). Include WSfun E. Section elt. Variable elt:Type. Definition lt_key (p p':key*elt) := E.lt (fst p) (fst p'). (* Additional specification of [elements] *) Parameter elements_3 : forall m, sort lt_key (elements m).
Remark: since fold is specified via elements, this stronger
specification of elements has an indirect impact on fold,
which can now be proved to receive elements in increasing order.
End elt. End Sfun.
Module Type S. Declare Module E : OrderedType. Include Sfun E. End S.
Module Type Sord. Declare Module Data : OrderedType. Declare Module MapS : S. Import MapS. Definition t := MapS.t Data.t. Parameter eq : t -> t -> Prop. Parameter lt : t -> t -> Prop. Axiom eq_refl : forall m : t, eq m m. Axiom eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1. Axiom eq_trans : forall m1 m2 m3 : t, eq m1 m2 -> eq m2 m3 -> eq m1 m3. Axiom lt_trans : forall m1 m2 m3 : t, lt m1 m2 -> lt m2 m3 -> lt m1 m3. Axiom lt_not_eq : forall m1 m2 : t, lt m1 m2 -> ~ eq m1 m2. Definition cmp e e' := match Data.compare e e' with EQ _ => true | _ => false end. Parameter eq_1 : forall m m', Equivb cmp m m' -> eq m m'. Parameter eq_2 : forall m m', eq m m' -> Equivb cmp m m'. Parameter compare : forall m1 m2, Compare lt eq m1 m2.
Total ordering between maps. Data.compare is a total ordering
used to compare data associated with equal keys in the two maps.
End Sord.