Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
This file formalizes Berardi's paradox which says that in
the calculus of constructions, excluded middle (EM) and axiom of
choice (AC) imply proof irrelevance (PI).
Here, the axiom of choice is not necessary because of the use
of inductive types.
@article{Barbanera-Berardi:JFP96, author = {F. Barbanera and S. Berardi}, title = {Proof-irrelevance out of Excluded-middle and Choice in the Calculus of Constructions}, journal = {Journal of Functional Programming}, year = {1996}, volume = {6}, number = {3}, pages = {519-525} }
Set Implicit Arguments. Section Berardis_paradox.
Excluded middle
Hypothesis EM : forall P:Prop, P \/ ~ P.
Conditional on any proposition.
Definition IFProp (P B:Prop) (e1 e2:P) :=
match EM B with
| or_introl _ => e1
| or_intror _ => e2
end.
Axiom of choice applied to disjunction.
Provable in Coq because of dependent elimination.
EM:forall P : Prop, P \/ ~ Pforall (P B : Prop) (e1 e2 : P) (Q : P -> Prop), (B -> Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2)EM:forall P : Prop, P \/ ~ Pforall (P B : Prop) (e1 e2 : P) (Q : P -> Prop), (B -> Q e1) -> (~ B -> Q e2) -> Q (IFProp B e1 e2)EM:forall P0 : Prop, P0 \/ ~ P0P, B:Prope1, e2:PQ:P -> Propp1:B -> Q e1p2:~ B -> Q e2Q (IFProp B e1 e2)case (EM B); assumption. Qed.EM:forall P0 : Prop, P0 \/ ~ P0P, B:Prope1, e2:PQ:P -> Propp1:B -> Q e1p2:~ B -> Q e2Q match EM B with | or_introl _ => e1 | or_intror _ => e2 end
We assume a type with two elements. They play the role of booleans.
The main theorem under the current assumptions is that T=F
Variable Bool : Prop. Variable T : Bool. Variable F : Bool.
The powerset operator
Definition pow (P:Prop) := P -> Bool.
A piece of theory about retracts
Section Retracts. Variables A B : Prop. Record retract : Prop := {i : A -> B; j : B -> A; inv : forall a:A, j (i a) = a}. Record retract_cond : Prop := {i2 : A -> B; j2 : B -> A; inv2 : retract -> forall a:A, j2 (i2 a) = a}.
The dependent elimination above implies the axiom of choice:
EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propforall r : retract_cond, retract -> forall a : A, j2 r (i2 r a) = aEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propforall r : retract_cond, retract -> forall a : A, j2 r (i2 r a) = aexact (inv2 r). Qed. End Retracts.EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propr:retract_condretract -> forall a : A, j2 r (i2 r a) = a
This lemma is basically a commutation of implication and existential
quantification: (EX x | A -> P(x)) <=> (A -> EX x | P(x))
which is provable in classical logic ( => is already provable in
intuitionistic logic).
EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolforall A B : Prop, retract_cond (pow A) (pow B)EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolforall A B : Prop, retract_cond (pow A) (pow B)EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propretract_cond (pow A) (pow B)EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propf0:pow A -> pow Bg0:pow B -> pow Ae:forall a : pow A, g0 (f0 a) = aretract_cond (pow A) (pow B)EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Prophf:~ retract (pow A) (pow B)retract_cond (pow A) (pow B)exists f0 g0; trivial.EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Propf0:pow A -> pow Bg0:pow B -> pow Ae:forall a : pow A, g0 (f0 a) = aretract_cond (pow A) (pow B)exists (fun (x:pow A) (y:B) => F) (fun (x:pow B) (y:A) => F); intros; destruct hf; auto. Qed.EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolA, B:Prophf:~ retract (pow A) (pow B)retract_cond (pow A) (pow B)
The paradoxical set
Definition U := forall P:Prop, pow P.
Bijection between U and (pow U)
Definition f (u:U) : pow U := u U. Definition g (h:pow U) : U := fun X => let lX := j2 (L1 X U) in let rU := i2 (L1 U U) in lX (rU h).
We deduce that the powerset of U is a retract of U.
This lemma is stated in Berardi's article, but is not used
afterwards.
EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolretract (pow U) UEM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolretract (pow U) UEM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolforall a : pow U, f (g a) = aEM:forall P : Prop, P \/ ~ PBool:PropT, F:Boola:pow Uf (g a) = aEM:forall P : Prop, P \/ ~ PBool:PropT, F:Boola:pow Uj2 (L1 U U) (i2 (L1 U U) a) = aEM:forall P : Prop, P \/ ~ PBool:PropT, F:Boola:pow Uretract (pow U) (pow U)trivial. Qed.EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boola:pow Uforall a0 : pow U, a0 = a0
Encoding of Russel's paradox
The boolean negation.
Definition Not_b (b:Bool) := IFProp (b = T) F T.
the set of elements not belonging to itself
Definition R : U := g (fun u:U => Not_b (u U u)).EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolg (fun u : U => Not_b (u U u)) R = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolj2 (L1 U U) (i2 (L1 U U) (fun u : U => Not_b (u U u))) R = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolNot_b (R R) = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolretract (pow U) (pow U)trivial.EM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolNot_b (R R) = Not_b (R R)EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolretract (pow U) (pow U)trivial. Qed.EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolforall a : pow U, a = aEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolT = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolT = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = Not_b (R R) -> T = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = IFProp (R R = T) F T -> T = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = T -> R R = F -> T = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R <> T -> R R = T -> T = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R = T -> R R = F -> T = Felim is_true; elim is_false; trivial.EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolis_true:R R = Tis_false:R R = FT = FEM:forall P : Prop, P \/ ~ PBool:PropT, F:BoolR R <> T -> R R = T -> T = Felim not_true; trivial. Qed. Notation classical_proof_irrelevence := classical_proof_irrelevance (compat "8.8"). End Berardis_paradox.EM:forall P : Prop, P \/ ~ PBool:PropT, F:Boolnot_true:R R <> Tis_true:R R = TT = F