Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(*i $Id: ConstructiveEpsilon.v 12112 2009-04-28 15:47:34Z herbelin $ i*)
This provides with a proof of the constructive form of definite
and indefinite descriptions for Sigma^0_1-formulas (hereafter called
"small" formulas), which infers the sigma-existence (i.e.,
Type-existence) of a witness to a decidable predicate over a
countable domain from the regular existence (i.e.,
Prop-existence).
Coq does not allow case analysis on sort Prop when the goal is in
not in Prop. Therefore, one cannot eliminate ∃ n, P n in order to
show {n : nat | P n}. However, one can perform a recursion on an
inductive predicate in sort Prop so that the returning type of the
recursion is in Type. This trick is described in Coq'Art book, Sect.
14.2.3 and 15.4. In particular, this trick is used in the proof of
Fix_F in the module Coq.Init.Wf. There, recursion is done on an
inductive predicate Acc and the resulting type is in Type.
To find a witness of P constructively, we program the well-known
linear search algorithm that tries P on all natural numbers starting
from 0 and going up. Such an algorithm needs a suitable termination
certificate. We offer two ways for providing this termination
certificate: a direct one, based on an ad-hoc predicate called
before_witness, and another one based on the predicate Acc.
For the first one we provide explicit and short proof terms.
Based on ideas from Benjamin Werner and Jean-François Monin
Contributed by Yevgeniy Makarov and Jean-François Monin
(* -------------------------------------------------------------------- *) (* Direct version *) Require Import Arith. Section ConstructiveIndefiniteGroundDescription_Direct. Variable P : nat -> Prop. Hypothesis P_dec : forall n, {P n}+{~(P n)}.
The termination argument is before_witness n, which says that
any number before any witness (not necessarily the x of ∃ x :A, P x)
makes the search eventually stops.
Inductive before_witness (n:nat) : Prop := | stop : P n -> before_witness n | next : before_witness (S n) -> before_witness n. (* Computation of the initial termination certificate *) Fixpoint O_witness (n : nat) : before_witness n -> before_witness 0 := match n return (before_witness n -> before_witness 0) with | 0 => fun b => b | S n => fun b => O_witness n (next n b) end. (* Inversion of [inv_before_witness n] in a way such that the result is structurally smaller even in the [stop] case. *) Definition inv_before_witness : forall n, before_witness n -> ~(P n) -> before_witness (S n) := fun n b => match b return ~ P n -> before_witness (S n) with | stop _ p => fun not_p => match (not_p p) with end | next _ b => fun _ => b end. Fixpoint linear_search m (b : before_witness m) : {n : nat | P n} := match P_dec m with | left yes => exist (fun n => P n) m yes | right no => linear_search (S m) (inv_before_witness m b no) end. Definition constructive_indefinite_ground_description_nat : (exists n, P n) -> {n:nat | P n} := fun e => linear_search O (let (n, p) := e in O_witness n (stop n p)).P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k : nat), start0 <= k < proj1_sig (linear_search start0 pr0) -> ~ P kstart:natpr:before_witness startforall k : nat, start <= k < proj1_sig (linear_search start pr) -> ~ P k(* Recursion on pr, which is the distance between start and linear_search *)P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k : nat), start0 <= k < proj1_sig (linear_search start0 pr0) -> ~ P kstart:natpr:before_witness startforall k : nat, start <= k < proj1_sig (linear_search start pr) -> ~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left p~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left p~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left p~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left pproj1_sig (linear_search start pr) = startP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left pproj1_sig (linear_search start pr) = startdestruct pr; rewrite -> Pstart; reflexivity.P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left pproj1_sig ((fix linear_search (m : nat) (b : before_witness m) {struct b} : {n : nat | P n} := match P_dec m with | left yes => exist (fun n : nat => P n) m yes | right no => linear_search (S m) (inv_before_witness m b no) end) start pr) = startP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)p:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:k < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:start < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:k < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = startstart <= kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:Falsep:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = start~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:k < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = startstart <= kassumption.P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= kH1:k < startp:P startPstart:P_dec start = left pH0:proj1_sig (linear_search start pr) = startstart <= kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness startk:natH:start <= k < proj1_sig (linear_search start pr)n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr) -> ~ P k0start:natp:P startk:natH:start <= k < proj1_sig (linear_search start (stop start p))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start <= k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start <= k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start <= kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < k \/ start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right nS start <= k < proj1_sig (linear_search (S start) pr)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right nS start <= kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right nk < proj1_sig (linear_search (S start) pr)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right nk < proj1_sig (linear_search (S start) pr)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig match P_dec start with | left yes => exist (fun n0 : nat => P n0) start yes | right _ => linear_search (S start) pr endn:~ P startPstart:P_dec start = right nk < proj1_sig (linear_search (S start) pr)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start < kH0:k < proj1_sig (linear_search (S start) pr)n:~ P startPstart:P_dec start = right nk < proj1_sig (linear_search (S start) pr)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start0 : nat) (pr0 : before_witness start0) (k0 : nat), start0 <= k0 < proj1_sig (linear_search start0 pr0) -> ~ P k0start:natpr:before_witness (S start)k:natH:start = kH0:k < proj1_sig (linear_search start (next start pr))n:~ P startPstart:P_dec start = right n~ P kassumption. Defined.P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}linear_search_smallest:forall (start : nat) (pr0 : before_witness start) (k0 : nat), start <= k0 < proj1_sig (linear_search start pr0) -> ~ P k0k:natpr:before_witness (S k)n:~ P kPstart:P_dec k = right nH0:k < proj1_sig (linear_search k (next k pr))~ P kP:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}(exists n : nat, P n) -> {n : nat | P n /\ (forall k : nat, k < n -> ~ P k)}P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}(exists n : nat, P n) -> {n : nat | P n /\ (forall k : nat, k < n -> ~ P k)}P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}H:exists n : nat, P n{n : nat | P n /\ (forall k : nat, k < n -> ~ P k)}P:nat -> PropP_dec:forall n : nat, {P n} + {~ P n}H:exists n : nat, P nwit:=let (n, p) := H in O_witness n (stop n p):before_witness 0{n : nat | P n /\ (forall k : nat, k < n -> ~ P k)}P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n pr{n0 : nat | P n0 /\ (forall k : nat, k < n0 -> ~ P k)}P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prP n /\ (forall k : nat, k < n -> ~ P k)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prP nP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prforall k : nat, k < n -> ~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prforall k : nat, k < n -> ~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < n~ P kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < n0 <= k < proj1_sig (linear_search 0 wit)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < n0 <= kP:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < nk < proj1_sig (linear_search 0 wit)P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < nk < proj1_sig (linear_search 0 wit)assumption. Qed. End ConstructiveIndefiniteGroundDescription_Direct. (************************************************************************) (* Version using the predicate [Acc] *) Section ConstructiveIndefiniteGroundDescription_Acc. Variable P : nat -> Prop. Hypothesis P_decidable : forall n : nat, {P n} + {~ P n}.P:nat -> PropP_dec:forall n0 : nat, {P n0} + {~ P n0}H:exists n0 : nat, P n0wit:=let (n0, p) := H in O_witness n0 (stop n0 p):before_witness 0n:natpr:P nls:linear_search 0 wit = exist (fun n0 : nat => P n0) n prk:natH0:k < nk < proj1_sig (exist (fun n0 : nat => P n0) n pr)
The predicate Acc delineates elements that are accessible via a
given relation R. An element is accessible if there are no infinite
R-descending chains starting from it.
To use Fix_F, we define a relation R and prove that if ∃ n, P n
then 0 is accessible with respect to R. Then, by induction on the
definition of Acc R 0, we show {n : nat | P n}.
The relation R describes the connection between the two successive
numbers we try. Namely, y is R-less then x if we try y after
x, i.e., y = S x and P x is false. Then the absence of an
infinite R-descending chain from 0 is equivalent to the termination
of our searching algorithm.
Let R (x y : nat) : Prop := x = S y /\ ~ P y. Notation acc x := (Acc R x).P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propforall x : nat, P x -> acc xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propforall x : nat, P x -> acc xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natH:P xacc xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natH:P xforall y : nat, R y x -> acc yabsurd (P x); assumption. Qed.P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natH:P xy:natnot_Px:~ P xacc yP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propforall x n : nat, P (n + x) -> acc xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propforall x n : nat, P (n + x) -> acc xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propforall x : nat, P x -> acc xP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propn:natIH:forall x : nat, P (n + x) -> acc xforall x : nat, P (S (n + x)) -> acc xP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propn:natIH:forall x : nat, P (n + x) -> acc xforall x : nat, P (S (n + x)) -> acc xP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propn:natIH:forall x0 : nat, P (n + x0) -> acc x0x:natH:P (S (n + x))acc xP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propn:natIH:forall x0 : nat, P (n + x0) -> acc x0x:natH:P (S (n + x))forall y : nat, R y x -> acc yP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propn:natIH:forall x0 : nat, P (n + x0) -> acc x0x:natH:P (S (n + x))y:natfxy:y = S xacc yP:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propn:natIH:forall x0 : nat, P (n + x0) -> acc x0x:natH:P (S (n + x))y:natfxy:y = S xP (n + y)replace (n + S x) with (S (n + x)); auto with arith. Defined.P:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propn:natIH:forall x0 : nat, P (n + x0) -> acc x0x:natH:P (S (n + x))y:natfxy:y = S xP (n + S x)P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Prop(exists n : nat, P n) -> acc 0P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Prop(exists n : nat, P n) -> acc 0P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> PropH:exists n : nat, P nforall x : nat, P x -> acc 0P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> PropH:exists n : nat, P nx:natPx:P xacc 0replace (x + 0) with x; auto with arith. Defined.P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> PropH:exists n : nat, P nx:natPx:P xP (x + 0)
In the following statement, we use the trick with recursion on
Acc. This is also where decidability of P is used.
P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propacc 0 -> {n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Propacc 0 -> {n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> PropAcc_0:acc 0{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> PropAcc_0:acc 0(fun _ : nat => {n0 : nat | P n0}) 0P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> PropAcc_0:acc 0forall x : nat, (forall y : nat, R y x -> {n : nat | P n}) -> {n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natIH:forall y : nat, R y x -> {n : nat | P n}{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natIH:forall y : nat, R y x -> {n : nat | P n}Px:P x{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natIH:forall y : nat, R y x -> {n : nat | P n}not_Px:~ P x{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y : nat => x0 = S y /\ ~ P y:nat -> nat -> Propx:natIH:forall y : nat, R y x -> {n : nat | P n}not_Px:~ P x{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natIH:forall y0 : nat, R y0 x -> {n : nat | P n}not_Px:~ P xy:=S x:nat{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natIH:forall y0 : nat, R y0 x -> {n : nat | P n}not_Px:~ P xy:=S x:natR y xP:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natIH:forall y0 : nat, R y0 x -> {n : nat | P n}not_Px:~ P xy:=S x:natRyx:R y x{n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natIH:forall y0 : nat, R y0 x -> {n : nat | P n}not_Px:~ P xy:=S x:natRyx:R y x{n : nat | P n}exists n; assumption. Defined.P:nat -> PropP_decidable:forall n0 : nat, {P n0} + {~ P n0}R:=fun x0 y0 : nat => x0 = S y0 /\ ~ P y0:nat -> nat -> Propx:natIH:forall y0 : nat, R y0 x -> {n0 : nat | P n0}not_Px:~ P xy:=S x:natRyx:R y xn:natHn:P n{n0 : nat | P n0}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Prop(exists n : nat, P n) -> {n : nat | P n}P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> Prop(exists n : nat, P n) -> {n : nat | P n}apply P_eventually_implies_acc_ex; assumption. Defined. End ConstructiveIndefiniteGroundDescription_Acc. (************************************************************************) Section ConstructiveGroundEpsilon_nat. Variable P : nat -> Prop. Hypothesis P_decidable : forall x : nat, {P x} + {~ P x}. Definition constructive_ground_epsilon_nat (E : exists n : nat, P n) : nat := proj1_sig (constructive_indefinite_ground_description_nat P P_decidable E). Definition constructive_ground_epsilon_spec_nat (E : (exists n, P n)) : P (constructive_ground_epsilon_nat E) := proj2_sig (constructive_indefinite_ground_description_nat P P_decidable E). End ConstructiveGroundEpsilon_nat. (************************************************************************) Section ConstructiveGroundEpsilon.P:nat -> PropP_decidable:forall n : nat, {P n} + {~ P n}R:=fun x y : nat => x = S y /\ ~ P y:nat -> nat -> PropH:exists n : nat, P nacc 0
For the current purpose, we say that a set A is countable if
there are functions f : A → nat and g : nat → A such that g is
a left inverse of f.
Variable A : Type. Variable f : A -> nat. Variable g : nat -> A. Hypothesis gof_eq_id : forall x : A, g (f x) = x. Variable P : A -> Prop. Hypothesis P_decidable : forall x : A, {P x} + {~ P x}. Definition P' (x : nat) : Prop := P (g x).A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}forall n : nat, {P' n} + {~ P' n}intro n; unfold P'; destruct (P_decidable (g n)); auto. Defined.A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}forall n : nat, {P' n} + {~ P' n}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}(exists x : A, P x) -> {x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}(exists x : A, P x) -> {x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P x{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xexists n : nat, P' nA:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xH1:exists n : nat, P' n{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x0 : A, g (f x0) = x0P:A -> PropP_decidable:forall x0 : A, {P x0} + {~ P x0}x:AHx:P xexists n : nat, P' nA:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xH1:exists n : nat, P' n{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x0 : A, g (f x0) = x0P:A -> PropP_decidable:forall x0 : A, {P x0} + {~ P x0}x:AHx:P xP (g (f x))A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xH1:exists n : nat, P' n{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xH1:exists n : nat, P' n{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xH1:{n : nat | P' n}{x : A | P x}exists (g n); unfold P' in Hn; assumption. Defined.A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}H:exists x : A, P xn:natHn:P' n{x : A | P x}A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}(exists ! x : A, P x) -> {x : A | P x}intros; apply constructive_indefinite_ground_description; firstorder. Defined. Definition constructive_ground_epsilon (E : exists x : A, P x) : A := proj1_sig (constructive_indefinite_ground_description E). Definition constructive_ground_epsilon_spec (E : (exists x, P x)) : P (constructive_ground_epsilon E) := proj2_sig (constructive_indefinite_ground_description E). End ConstructiveGroundEpsilon. (* begin hide *) (* Compatibility: the qualificative "ground" was absent from the initial names of the results in this file but this had introduced confusion with the similarly named statement in Description.v *) Notation constructive_indefinite_description_nat := constructive_indefinite_ground_description_nat (only parsing). Notation constructive_epsilon_spec_nat := constructive_ground_epsilon_spec_nat (only parsing). Notation constructive_epsilon_nat := constructive_ground_epsilon_nat (only parsing). Notation constructive_indefinite_description := constructive_indefinite_ground_description (only parsing). Notation constructive_definite_description := constructive_definite_ground_description (only parsing). Notation constructive_epsilon_spec := constructive_ground_epsilon_spec (only parsing). Notation constructive_epsilon := constructive_ground_epsilon (only parsing). (* end hide *)A:Typef:A -> natg:nat -> Agof_eq_id:forall x : A, g (f x) = xP:A -> PropP_decidable:forall x : A, {P x} + {~ P x}(exists ! x : A, P x) -> {x : A | P x}