Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
This file provides a constructive form of indefinite description that
allows building choice functions; this is weaker than Hilbert's
epsilon operator (which implies weakly classical properties) but
stronger than the axiom of choice (which cannot be used outside
the context of a theorem proof).
Require Import ChoiceFacts. Set Implicit Arguments. Axiom constructive_indefinite_description : forall (A : Type) (P : A->Prop), (exists x, P x) -> { x : A | P x }.forall (A : Type) (P : A -> Prop), (exists ! x : A, P x) -> {x : A | P x}intros; apply constructive_indefinite_description; firstorder. Qed.forall (A : Type) (P : A -> Prop), (exists ! x : A, P x) -> {x : A | P x}forall (A B : Type) (R : A -> B -> Prop), (forall x : A, exists y : B, R x y) -> exists f : A -> B, forall x : A, R x (f x)forall (A B : Type) (R : A -> B -> Prop), (forall x : A, exists y : B, R x y) -> exists f : A -> B, forall x : A, R x (f x)exact constructive_indefinite_description. Qed.ConstructiveIndefiniteDescription