Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
This module states the functional form of the axiom of choice over setoids, commonly called extensional axiom of choice [Carlström04], [Martin-Löf05]. This is obtained by a decomposition of the axiom into the following components:
Among other results, it entails:
[Carlström04] Jesper Carlström, EM + Ext + AC_int is equivalent to AC_ext, Mathematical Logic Quaterly, vol 50(3), pp 236-240, 2004.
[Martin-Löf05] Per Martin-Löf, 100 years of Zermelos axiom of choice: what was the problem with it?, lecture notes for KTH/SU colloquium, 2005.
Require Export ClassicalChoice. (* classical logic, relational choice, unique choice *)
Require Export ExtensionalFunctionRepresentative.

Require Import ChoiceFacts.
Require Import ClassicalFacts.
Require Import RelationClasses.


forall (A B : Type) (R : A -> A -> Prop) (T : A -> B -> Prop), Equivalence R -> (forall (x x' : A) (y : B), R x x' -> T x y -> T x' y) -> (forall x : A, exists y : B, T x y) -> exists f : A -> B, forall x : A, T x (f x) /\ (forall x' : A, R x x' -> f x = f x')

forall (A B : Type) (R : A -> A -> Prop) (T : A -> B -> Prop), Equivalence R -> (forall (x x' : A) (y : B), R x x' -> T x y -> T x' y) -> (forall x : A, exists y : B, T x y) -> exists f : A -> B, forall x : A, T x (f x) /\ (forall x' : A, R x x' -> f x = f x')

FunctionalChoice /\ (forall A B : Type, exists h : (A -> B) -> A -> B, forall f : A -> B, (forall x : A, f x = h f x) /\ (forall g : A -> B, (forall x : A, f x = g x) -> h f = h g)) /\ ExcludedMiddle

FunctionalChoice

forall A B : Type, exists h : (A -> B) -> A -> B, forall f : A -> B, (forall x : A, f x = h f x) /\ (forall g : A -> B, (forall x : A, f x = g x) -> h f = h g)

ExcludedMiddle

FunctionalChoice
exact choice.

forall A B : Type, exists h : (A -> B) -> A -> B, forall f : A -> B, (forall x : A, f x = h f x) /\ (forall g : A -> B, (forall x : A, f x = g x) -> h f = h g)
exact extensional_function_representative.

ExcludedMiddle
exact classic. Qed.

forall (A : Type) (R : A -> A -> Prop), Equivalence R -> exists f : A -> A, forall x : A, R x (f x) /\ (forall x' : A, R x x' -> f x = f x')

forall (A : Type) (R : A -> A -> Prop), Equivalence R -> exists f : A -> A, forall x : A, R x (f x) /\ (forall x' : A, R x x' -> f x = f x')

SetoidFunctionalChoice
exact setoid_choice. Qed.