Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Export NZAxioms. Require Import Bool NZParity NZPow NZSqrt NZLog NZGcd NZDiv NZBits.
We obtain integers by postulating that successor of predecessor
is identity.
Module Type ZAxiom (Import Z : NZAxiomsSig'). Axiom succ_pred : forall n, S (P n) == n. End ZAxiom.
For historical reasons, ZAxiomsMiniSig isn't just NZ + ZAxiom,
we also add an opp function, that can be seen as a shortcut
for sub 0.
Module Type Opp (Import T:Typ). Parameter Inline opp : t -> t. End Opp. Module Type OppNotation (T:Typ)(Import O : Opp T). Notation "- x" := (opp x) (at level 35, right associativity). End OppNotation. Module Type Opp' (T:Typ) := Opp T <+ OppNotation T. Module Type IsOpp (Import Z : NZAxiomsSig')(Import O : Opp' Z). Declare Instance opp_wd : Proper (eq==>eq) opp. Axiom opp_0 : - 0 == 0. Axiom opp_succ : forall n, - (S n) == P (- n). End IsOpp. Module Type OppCstNotation (Import A : NZAxiomsSig)(Import B : Opp A). Notation "- 1" := (opp one). Notation "- 2" := (opp two). End OppCstNotation. Module Type ZAxiomsMiniSig := NZOrdAxiomsSig <+ ZAxiom <+ Opp <+ IsOpp. Module Type ZAxiomsMiniSig' := NZOrdAxiomsSig' <+ ZAxiom <+ Opp' <+ IsOpp <+ OppCstNotation.
Other functions and their specifications
Absolute value
Module Type HasAbs(Import Z : ZAxiomsMiniSig'). Parameter Inline abs : t -> t. Axiom abs_eq : forall n, 0<=n -> abs n == n. Axiom abs_neq : forall n, n<=0 -> abs n == -n. End HasAbs.
A sign function
Module Type HasSgn (Import Z : ZAxiomsMiniSig'). Parameter Inline sgn : t -> t. Axiom sgn_null : forall n, n==0 -> sgn n == 0. Axiom sgn_pos : forall n, 0<n -> sgn n == 1. Axiom sgn_neg : forall n, n<0 -> sgn n == -1. End HasSgn.
Divisions
First, the usual Coq convention of Truncated-Toward-Bottom
(a.k.a Floor). We simply extend the NZ signature.
Module Type ZDivSpecific (Import A:ZAxiomsMiniSig')(Import B : DivMod' A). Axiom mod_pos_bound : forall a b, 0 < b -> 0 <= a mod b < b. Axiom mod_neg_bound : forall a b, b < 0 -> b < a mod b <= 0. End ZDivSpecific. Module Type ZDiv (Z:ZAxiomsMiniSig) := NZDiv.NZDiv Z <+ ZDivSpecific Z. Module Type ZDiv' (Z:ZAxiomsMiniSig) := NZDiv.NZDiv' Z <+ ZDivSpecific Z.
Then, the Truncated-Toward-Zero convention.
For not colliding with Floor operations, we use different names
Module Type QuotRem (Import A : Typ). Parameters Inline quot rem : t -> t -> t. End QuotRem. Module Type QuotRemNotation (A : Typ)(Import B : QuotRem A). Infix "÷" := quot (at level 40, left associativity). Infix "rem" := rem (at level 40, no associativity). End QuotRemNotation. Module Type QuotRem' (A : Typ) := QuotRem A <+ QuotRemNotation A. Module Type QuotRemSpec (Import A : ZAxiomsMiniSig')(Import B : QuotRem' A). Declare Instance quot_wd : Proper (eq==>eq==>eq) quot. Declare Instance rem_wd : Proper (eq==>eq==>eq) B.rem. Axiom quot_rem : forall a b, b ~= 0 -> a == b*(a÷b) + (a rem b). Axiom rem_bound_pos : forall a b, 0<=a -> 0<b -> 0 <= a rem b < b. Axiom rem_opp_l : forall a b, b ~= 0 -> (-a) rem b == - (a rem b). Axiom rem_opp_r : forall a b, b ~= 0 -> a rem (-b) == a rem b. End QuotRemSpec. Module Type ZQuot (Z:ZAxiomsMiniSig) := QuotRem Z <+ QuotRemSpec Z. Module Type ZQuot' (Z:ZAxiomsMiniSig) := QuotRem' Z <+ QuotRemSpec Z.
For all other functions, the NZ axiomatizations are enough.
Let's group everything
Module Type ZAxiomsSig := ZAxiomsMiniSig <+ OrderFunctions <+ HasAbs <+ HasSgn <+ NZParity.NZParity <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2 <+ NZGcd.NZGcd <+ ZDiv <+ ZQuot <+ NZBits.NZBits <+ NZSquare. Module Type ZAxiomsSig' := ZAxiomsMiniSig' <+ OrderFunctions' <+ HasAbs <+ HasSgn <+ NZParity.NZParity <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2 <+ NZGcd.NZGcd' <+ ZDiv' <+ ZQuot' <+ NZBits.NZBits' <+ NZSquare.