Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Export Decidable.
Require Export ZAxioms.
Require Import NZProperties.

Module ZBaseProp (Import Z : ZAxiomsMiniSig').
Include NZProp Z.

(* Theorems that are true for integers but not for natural numbers *)


forall n m : t, P n == P m -> n == m

forall n m : t, P n == P m -> n == m
n, m:t
H:P n == P m

n == m
n, m:t
H:S (P n) == S (P m)

n == m
now rewrite 2 succ_pred in H. Qed.

forall n1 n2 : t, P n1 == P n2 <-> n1 == n2

forall n1 n2 : t, P n1 == P n2 <-> n1 == n2
intros n1 n2; split; [apply pred_inj | intros; now f_equiv]. Qed.

S (-1) == 0

S (-1) == 0
now rewrite one_succ, opp_succ, opp_0, succ_pred. Qed. End ZBaseProp.