Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Export Decidable. Require Export ZAxioms. Require Import NZProperties. Module ZBaseProp (Import Z : ZAxiomsMiniSig'). Include NZProp Z. (* Theorems that are true for integers but not for natural numbers *)forall n m : t, P n == P m -> n == mforall n m : t, P n == P m -> n == mn, m:tH:P n == P mn == mnow rewrite 2 succ_pred in H. Qed.n, m:tH:S (P n) == S (P m)n == mforall n1 n2 : t, P n1 == P n2 <-> n1 == n2intros n1 n2; split; [apply pred_inj | intros; now f_equiv]. Qed.forall n1 n2 : t, P n1 == P n2 <-> n1 == n2S (-1) == 0now rewrite one_succ, opp_succ, opp_0, succ_pred. Qed. End ZBaseProp.S (-1) == 0