Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Pierre Letouzey, Jerome Vouillon, PPS, Paris 7, 2008 *) (************************************************************************) Local Open Scope type_scope. Require Import List.
The type of n-ary function: nfun A n B is
A → ... → A → B with n occurrences of A in this type.
Fixpoint nfun A n B := match n with | O => B | S n => A -> (nfun A n B) end. Notation " A ^^ n --> B " := (nfun A n B) (at level 50, n at next level) : type_scope.
napply_cst _ _ a n f iterates n times the application of a
particular constant a to the n-ary function f.
Fixpoint napply_cst (A B:Type)(a:A) n : (A^^n-->B) -> B :=
match n return (A^^n-->B) -> B with
| O => fun x => x
| S n => fun x => napply_cst _ _ a n (x a)
end.
A generic transformation from an n-ary function to another one.
Fixpoint nfun_to_nfun (A B C:Type)(f:B -> C) n :
(A^^n-->B) -> (A^^n-->C) :=
match n return (A^^n-->B) -> (A^^n-->C) with
| O => f
| S n => fun g a => nfun_to_nfun _ _ _ f n (g a)
end.
napply_except_last _ _ n f expects n arguments of type A,
applies n-1 of them to f and discard the last one.
Definition napply_except_last (A B:Type) :=
nfun_to_nfun A B (A->B) (fun b a => b).
napply_then_last _ _ a n f expects n arguments of type A,
applies them to f and then apply a to the result.
Definition napply_then_last (A B:Type)(a:A) :=
nfun_to_nfun A (A->B) B (fun fab => fab a).
napply_discard _ b n expects n arguments, discards then,
and returns b.
Fixpoint napply_discard (A B:Type)(b:B) n : A^^n-->B :=
match n return A^^n-->B with
| O => b
| S n => fun _ => napply_discard _ _ b n
end.
A fold function
Fixpoint nfold A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
match n return (A^^n-->B) with
| O => b
| S n => fun a => (nfold _ _ f (f a b) n)
end.
n-ary products : nprod A n is A*...*A×unit,
with n occurrences of A in this type.
Fixpoint nprod A n : Type := match n with | O => unit | S n => (A * nprod A n)%type end. Notation "A ^ n" := (nprod A n) : type_scope.
n-ary curryfication / uncurryfication
Fixpoint ncurry (A B:Type) n : (A^n -> B) -> (A^^n-->B) := match n return (A^n -> B) -> (A^^n-->B) with | O => fun x => x tt | S n => fun f a => ncurry _ _ n (fun p => f (a,p)) end. Fixpoint nuncurry (A B:Type) n : (A^^n-->B) -> (A^n -> B) := match n return (A^^n-->B) -> (A^n -> B) with | O => fun x _ => x | S n => fun f p => let (x,p) := p in nuncurry _ _ n (f x) p end.
Earlier functions can also be defined via ncurry/nuncurry.
For instance :
Definition nfun_to_nfun_bis A B C (f:B->C) n :
(A^^n-->B) -> (A^^n-->C) :=
fun anb => ncurry _ _ n (fun an => f ((nuncurry _ _ n anb) an)).
We can also us it to obtain another fold function,
equivalent to the previous one, but with a nicer expansion
(see for instance Int31.iszero).
Fixpoint nfold_bis A B (f:A->B->B)(b:B) n : (A^^n-->B) :=
match n return (A^^n-->B) with
| O => b
| S n => fun a =>
nfun_to_nfun_bis _ _ _ (f a) n (nfold_bis _ _ f b n)
end.
From nprod to list
Fixpoint nprod_to_list (A:Type) n : A^n -> list A :=
match n with
| O => fun _ => nil
| S n => fun p => let (x,p) := p in x::(nprod_to_list _ n p)
end.
From list to nprod
Fixpoint nprod_of_list (A:Type)(l:list A) : A^(length l) :=
match l return A^(length l) with
| nil => tt
| x::l => (x, nprod_of_list _ l)
end.
This gives an additional way to write the fold
Definition nfold_list (A B:Type)(f:A->B->B)(b:B) n : (A^^n-->B) :=
ncurry _ _ n (fun p => fold_right f b (nprod_to_list _ _ p)).