Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Export NOrder. Module NAddOrderProp (Import N : NAxiomsMiniSig'). Include NOrderProp N.
Theorems true for natural numbers, not for integers
forall n m : t, n <= n + mforall n m : t, n <= n + mn:tn <= n + 0n:tforall n0 : t, n <= n + n0 -> n <= n + S n0n:tforall n0 : t, n <= n + n0 -> n <= n + S n0rewrite add_succ_r; now apply le_le_succ_r. Qed.n, m:tIH:n <= n + mn <= n + S mforall n m p : t, n < m -> n < m + pforall n m p : t, n < m -> n < m + papply add_lt_le_mono; [assumption | apply le_0_l]. Qed.n, m, p:tH:n < mn + 0 < m + pforall n m p : t, n < m -> n < p + mintros n m p; rewrite add_comm; apply lt_lt_add_r. Qed.forall n m p : t, n < m -> n < p + mforall n m : t, 0 < n -> 0 < n + mforall n m : t, 0 < n -> 0 < n + mn, m:tH:0 < n0 < nn, m:tH:0 < n0 <= mapply le_0_l. Qed.n, m:tH:0 < n0 <= mforall n m : t, 0 < m -> 0 < n + mforall n m : t, 0 < m -> 0 < n + mn, m:tH:0 < m0 <= nn, m:tH:0 < m0 < massumption. Qed. End NAddOrderProp.n, m:tH:0 < m0 < m