Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Export Bool NZAxioms NZParity NZPow NZSqrt NZLog NZDiv NZGcd NZBits.
From NZ, we obtain natural numbers just by stating that pred 0 == 0
Module Type NAxiom (Import NZ : NZDomainSig'). Axiom pred_0 : P 0 == 0. End NAxiom. Module Type NAxiomsMiniSig := NZOrdAxiomsSig <+ NAxiom. Module Type NAxiomsMiniSig' := NZOrdAxiomsSig' <+ NAxiom.
Let's now add some more functions and their specification
Division Function : we reuse NZDiv.DivMod and NZDiv.NZDivCommon,
and add to that a N-specific constraint.
Module Type NDivSpecific (Import N : NAxiomsMiniSig')(Import DM : DivMod' N). Axiom mod_upper_bound : forall a b, b ~= 0 -> a mod b < b. End NDivSpecific.
For all other functions, the NZ axiomatizations are enough.
We now group everything together.
Module Type NAxiomsSig := NAxiomsMiniSig <+ OrderFunctions <+ NZParity.NZParity <+ NZPow.NZPow <+ NZSqrt.NZSqrt <+ NZLog.NZLog2 <+ NZGcd.NZGcd <+ NZDiv.NZDiv <+ NZBits.NZBits <+ NZSquare. Module Type NAxiomsSig' := NAxiomsMiniSig' <+ OrderFunctions' <+ NZParity.NZParity <+ NZPow.NZPow' <+ NZSqrt.NZSqrt' <+ NZLog.NZLog2 <+ NZGcd.NZGcd' <+ NZDiv.NZDiv' <+ NZBits.NZBits' <+ NZSquare.
It could also be interesting to have a constructive recursor function.
Module Type NAxiomsRec (Import NZ : NZDomainSig'). Parameter Inline recursion : forall {A : Type}, A -> (t -> A -> A) -> t -> A. Declare Instance recursion_wd {A : Type} (Aeq : relation A) : Proper (Aeq ==> (eq==>Aeq==>Aeq) ==> eq ==> Aeq) recursion. Axiom recursion_0 : forall {A} (a : A) (f : t -> A -> A), recursion a f 0 = a. Axiom recursion_succ : forall {A} (Aeq : relation A) (a : A) (f : t -> A -> A), Aeq a a -> Proper (eq==>Aeq==>Aeq) f -> forall n, Aeq (recursion a f (S n)) (f n (recursion a f n)). End NAxiomsRec. Module Type NAxiomsRecSig := NAxiomsMiniSig <+ NAxiomsRec. Module Type NAxiomsRecSig' := NAxiomsMiniSig' <+ NAxiomsRec. Module Type NAxiomsFullSig := NAxiomsSig <+ NAxiomsRec. Module Type NAxiomsFullSig' := NAxiomsSig' <+ NAxiomsRec.