Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Evgeny Makarov, INRIA, 2007 *) (************************************************************************) Require Import NBase. Module Homomorphism (N1 N2 : NAxiomsRecSig). Local Notation "n == m" := (N2.eq n m) (at level 70, no associativity). Definition homomorphism (f : N1.t -> N2.t) : Prop := f N1.zero == N2.zero /\ forall n, f (N1.succ n) == N2.succ (f n). Definition natural_isomorphism : N1.t -> N2.t := N1.recursion N2.zero (fun (n : N1.t) (p : N2.t) => N2.succ p).Proper (N1.eq ==> N2.eq) natural_isomorphismProper (N1.eq ==> N2.eq) natural_isomorphismProper (N1.eq ==> N2.eq) (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p))x, y:N1.tH:N1.eq x yN1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) x == N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) yx, y:N1.tH:N1.eq x y(N1.eq ==> N2.eq ==> N2.eq)%signature (fun (_ : N1.t) (p : N2.t) => N2.succ p) (fun (_ : N1.t) (p : N2.t) => N2.succ p)now f_equiv. Qed.x, y:N1.tH:N1.eq x yx0, y0:N1.tH0:N1.eq x0 y0x1, y1:N2.tH1:x1 == y1N2.succ x1 == N2.succ y1natural_isomorphism N1.zero == N2.zerounfold natural_isomorphism; now rewrite N1.recursion_0. Qed.natural_isomorphism N1.zero == N2.zeroforall n : N1.t, natural_isomorphism (N1.succ n) == N2.succ (natural_isomorphism n)forall n : N1.t, natural_isomorphism (N1.succ n) == N2.succ (natural_isomorphism n)forall n : N1.t, N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) (N1.succ n) == N2.succ (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) n)n:N1.tN1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) (N1.succ n) == N2.succ (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) n)n:N1.tProper (N1.eq ==> N2.eq ==> N2.eq) (fun (_ : N1.t) (p : N2.t) => N2.succ p)now f_equiv. Qed.n, x, y:N1.tH:N1.eq x yx0, y0:N2.tH0:x0 == y0N2.succ x0 == N2.succ y0homomorphism natural_isomorphismunfold homomorphism, natural_isomorphism; split; [exact natural_isomorphism_0 | exact natural_isomorphism_succ]. Qed. End Homomorphism. Module Inverse (N1 N2 : NAxiomsRecSig). Module Import NBasePropMod1 := NBaseProp N1. (* This makes the tactic induct available. Since it is taken from (NBasePropFunct NAxiomsMod1), it refers to induction on N1. *) Module Hom12 := Homomorphism N1 N2. Module Hom21 := Homomorphism N2 N1. Notation h12 := Hom12.natural_isomorphism. Notation h21 := Hom21.natural_isomorphism. Local Notation "n == m" := (N1.eq n m) (at level 70, no associativity).homomorphism natural_isomorphismforall n : N1.t, h21 (h12 n) == nforall n : N1.t, h21 (h12 n) == nh21 (h12 N1.zero) == N1.zeroforall n : N1.t, h21 (h12 n) == n -> h21 (h12 (N1.succ n)) == N1.succ nforall n : N1.t, h21 (h12 n) == n -> h21 (h12 (N1.succ n)) == N1.succ nnow rewrite Hom12.natural_isomorphism_succ, Hom21.natural_isomorphism_succ, IH. Qed. End Inverse. Module Isomorphism (N1 N2 : NAxiomsRecSig). Module Hom12 := Homomorphism N1 N2. Module Hom21 := Homomorphism N2 N1. Module Inverse12 := Inverse N1 N2. Module Inverse21 := Inverse N2 N1. Notation h12 := Hom12.natural_isomorphism. Notation h21 := Hom21.natural_isomorphism. Definition isomorphism (f1 : N1.t -> N2.t) (f2 : N2.t -> N1.t) : Prop := Hom12.homomorphism f1 /\ Hom21.homomorphism f2 /\ forall n, N1.eq (f2 (f1 n)) n /\ forall n, N2.eq (f1 (f2 n)) n.n:N1.tIH:h21 (h12 n) == nh21 (h12 (N1.succ n)) == N1.succ nisomorphism h12 h21isomorphism h12 h21Hom12.homomorphism h12 /\ Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))Hom12.homomorphism h12Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))Hom21.homomorphism h21forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0)forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0)n:N1.tN1.eq (h21 (h12 n)) nn:N1.tforall n0 : N2.t, N2.eq (h12 (h21 n0)) n0apply Inverse21.inverse_nat_iso. Qed. End Isomorphism.n:N1.tforall n0 : N2.t, N2.eq (h12 (h21 n0)) n0