Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                      Evgeny Makarov, INRIA, 2007                     *)
(************************************************************************)

Require Import NBase.

Module Homomorphism (N1 N2 : NAxiomsRecSig).

Local Notation "n == m" := (N2.eq n m) (at level 70, no associativity).

Definition homomorphism (f : N1.t -> N2.t) : Prop :=
  f N1.zero == N2.zero /\ forall n, f (N1.succ n) == N2.succ (f n).

Definition natural_isomorphism : N1.t -> N2.t :=
  N1.recursion N2.zero (fun (n : N1.t) (p : N2.t) => N2.succ p).


Proper (N1.eq ==> N2.eq) natural_isomorphism

Proper (N1.eq ==> N2.eq) natural_isomorphism

Proper (N1.eq ==> N2.eq) (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p))
x, y:N1.t
H:N1.eq x y

N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) x == N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) y
x, y:N1.t
H:N1.eq x y

(N1.eq ==> N2.eq ==> N2.eq)%signature (fun (_ : N1.t) (p : N2.t) => N2.succ p) (fun (_ : N1.t) (p : N2.t) => N2.succ p)
x, y:N1.t
H:N1.eq x y
x0, y0:N1.t
H0:N1.eq x0 y0
x1, y1:N2.t
H1:x1 == y1

N2.succ x1 == N2.succ y1
now f_equiv. Qed.

natural_isomorphism N1.zero == N2.zero

natural_isomorphism N1.zero == N2.zero
unfold natural_isomorphism; now rewrite N1.recursion_0. Qed.

forall n : N1.t, natural_isomorphism (N1.succ n) == N2.succ (natural_isomorphism n)

forall n : N1.t, natural_isomorphism (N1.succ n) == N2.succ (natural_isomorphism n)

forall n : N1.t, N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) (N1.succ n) == N2.succ (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) n)
n:N1.t

N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) (N1.succ n) == N2.succ (N1.recursion N2.zero (fun (_ : N1.t) (p : N2.t) => N2.succ p) n)
n:N1.t

Proper (N1.eq ==> N2.eq ==> N2.eq) (fun (_ : N1.t) (p : N2.t) => N2.succ p)
n, x, y:N1.t
H:N1.eq x y
x0, y0:N2.t
H0:x0 == y0

N2.succ x0 == N2.succ y0
now f_equiv. Qed.

homomorphism natural_isomorphism

homomorphism natural_isomorphism
unfold homomorphism, natural_isomorphism; split; [exact natural_isomorphism_0 | exact natural_isomorphism_succ]. Qed. End Homomorphism. Module Inverse (N1 N2 : NAxiomsRecSig). Module Import NBasePropMod1 := NBaseProp N1. (* This makes the tactic induct available. Since it is taken from (NBasePropFunct NAxiomsMod1), it refers to induction on N1. *) Module Hom12 := Homomorphism N1 N2. Module Hom21 := Homomorphism N2 N1. Notation h12 := Hom12.natural_isomorphism. Notation h21 := Hom21.natural_isomorphism. Local Notation "n == m" := (N1.eq n m) (at level 70, no associativity).

forall n : N1.t, h21 (h12 n) == n

forall n : N1.t, h21 (h12 n) == n

h21 (h12 N1.zero) == N1.zero

forall n : N1.t, h21 (h12 n) == n -> h21 (h12 (N1.succ n)) == N1.succ n

forall n : N1.t, h21 (h12 n) == n -> h21 (h12 (N1.succ n)) == N1.succ n
n:N1.t
IH:h21 (h12 n) == n

h21 (h12 (N1.succ n)) == N1.succ n
now rewrite Hom12.natural_isomorphism_succ, Hom21.natural_isomorphism_succ, IH. Qed. End Inverse. Module Isomorphism (N1 N2 : NAxiomsRecSig). Module Hom12 := Homomorphism N1 N2. Module Hom21 := Homomorphism N2 N1. Module Inverse12 := Inverse N1 N2. Module Inverse21 := Inverse N2 N1. Notation h12 := Hom12.natural_isomorphism. Notation h21 := Hom21.natural_isomorphism. Definition isomorphism (f1 : N1.t -> N2.t) (f2 : N2.t -> N1.t) : Prop := Hom12.homomorphism f1 /\ Hom21.homomorphism f2 /\ forall n, N1.eq (f2 (f1 n)) n /\ forall n, N2.eq (f1 (f2 n)) n.

isomorphism h12 h21

isomorphism h12 h21

Hom12.homomorphism h12 /\ Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))

Hom12.homomorphism h12

Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))

Hom21.homomorphism h21 /\ (forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0))

Hom21.homomorphism h21

forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0)

forall n : N1.t, N1.eq (h21 (h12 n)) n /\ (forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0)
n:N1.t

N1.eq (h21 (h12 n)) n
n:N1.t
forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0
n:N1.t

forall n0 : N2.t, N2.eq (h12 (h21 n0)) n0
apply Inverse21.inverse_nat_iso. Qed. End Isomorphism.