Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
Properties of Square Root Function
Require Import NAxioms NSub NZSqrt.

Module NSqrtProp (Import A : NAxiomsSig')(Import B : NSubProp A).

 Module Import Private_NZSqrt := Nop <+ NZSqrtProp A A B.

 Ltac auto' := trivial; try rewrite <- neq_0_lt_0; auto using le_0_l.
 Ltac wrap l := intros; apply l; auto'.
We redefine NZSqrt's results, without the non-negative hyps

forall a : t, √ a * √ a <= a < S √ a * S √ a

forall a : t, √ a * √ a <= a < S √ a * S √ a
wrap sqrt_spec. Qed. Definition sqrt_unique : forall a b, b*b<=a<(S b)*(S b) -> √a == b := sqrt_unique.

forall a : t, √ (a * a) == a

forall a : t, √ (a * a) == a
wrap sqrt_square. Qed. Definition sqrt_le_mono : forall a b, a<=b -> √a <= √b := sqrt_le_mono. Definition sqrt_lt_cancel : forall a b, √a < √b -> a < b := sqrt_lt_cancel.

forall a b : t, b * b <= a <-> b <= √ a

forall a b : t, b * b <= a <-> b <= √ a
wrap sqrt_le_square. Qed.

forall a b : t, a < b * b <-> √ a < b

forall a b : t, a < b * b <-> √ a < b
wrap sqrt_lt_square. Qed. Definition sqrt_0 := sqrt_0. Definition sqrt_1 := sqrt_1. Definition sqrt_2 := sqrt_2. Definition sqrt_lt_lin : forall a, 1<a -> √a<a := sqrt_lt_lin.

forall a : t, √ a <= a

forall a : t, √ a <= a
wrap sqrt_le_lin. Qed. Definition sqrt_mul_below : forall a b, √a * √b <= √(a*b) := sqrt_mul_below.

forall a b : t, √ (a * b) < S √ a * S √ b

forall a b : t, √ (a * b) < S √ a * S √ b
wrap sqrt_mul_above. Qed.

forall a : t, √ (S a) <= S √ a

forall a : t, √ (S a) <= S √ a
wrap sqrt_succ_le. Qed.

forall a : t, √ (S a) == S √ a \/ √ (S a) == √ a

forall a : t, √ (S a) == S √ a \/ √ (S a) == √ a
wrap sqrt_succ_or. Qed. Definition sqrt_add_le : forall a b, √(a+b) <= √a + √b := sqrt_add_le.

forall a b : t, √ a + √ b <= √ (2 * (a + b))

forall a b : t, √ a + √ b <= √ (2 * (a + b))
wrap add_sqrt_le. Qed.
For the moment, we include stuff about sqrt_up with patching them.
Include NZSqrtUpProp A A B Private_NZSqrt.

End NSqrtProp.