Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(**********************************************************************)
(**********************************************************************)
Initial development by Pierre Crégut, CNET, Lannion, France
The type positive and its constructors xI and xO and xH
are now defined in BinNums.v
Require Export BinNums.
Postfix notation for positive numbers, which allows mimicking
the position of bits in a big-endian representation.
For instance, we can write 1~1~0 instead of (xO (xI xH))
for the number 6 (which is 110 in binary notation).
Local Notation "1" := xH. Notation "p ~ 1" := (xI p) (at level 7, left associativity, format "p '~' '1'") : positive_scope. Notation "p ~ 0" := (xO p) (at level 7, left associativity, format "p '~' '0'") : positive_scope. Local Open Scope positive_scope. Module Pos. Definition t := positive.
Fixpoint succ x :=
match x with
| p~1 => (succ p)~0
| p~0 => p~1
| 1 => 1~0
end.
Fixpoint add x y := match x, y with | p~1, q~1 => (add_carry p q)~0 | p~1, q~0 => (add p q)~1 | p~1, 1 => (succ p)~0 | p~0, q~1 => (add p q)~1 | p~0, q~0 => (add p q)~0 | p~0, 1 => p~1 | 1, q~1 => (succ q)~0 | 1, q~0 => q~1 | 1, 1 => 1~0 end with add_carry x y := match x, y with | p~1, q~1 => (add_carry p q)~1 | p~1, q~0 => (add_carry p q)~0 | p~1, 1 => (succ p)~1 | p~0, q~1 => (add_carry p q)~0 | p~0, q~0 => (add p q)~1 | p~0, 1 => (succ p)~0 | 1, q~1 => (succ q)~1 | 1, q~0 => (succ q)~0 | 1, 1 => 1~1 end. Infix "+" := add : positive_scope.
Fixpoint pred_double x :=
match x with
| p~1 => p~0~1
| p~0 => (pred_double p)~1
| 1 => 1
end.
Definition pred x :=
match x with
| p~1 => p~0
| p~0 => pred_double p
| 1 => 1
end.
Definition pred_N x :=
match x with
| p~1 => Npos (p~0)
| p~0 => Npos (pred_double p)
| 1 => N0
end.
Inductive mask : Set :=
| IsNul : mask
| IsPos : positive -> mask
| IsNeg : mask.
Definition succ_double_mask (x:mask) : mask :=
match x with
| IsNul => IsPos 1
| IsNeg => IsNeg
| IsPos p => IsPos p~1
end.
Definition double_mask (x:mask) : mask :=
match x with
| IsNul => IsNul
| IsNeg => IsNeg
| IsPos p => IsPos p~0
end.
Definition double_pred_mask x : mask :=
match x with
| p~1 => IsPos p~0~0
| p~0 => IsPos (pred_double p)~0
| 1 => IsNul
end.
Definition pred_mask (p : mask) : mask :=
match p with
| IsPos 1 => IsNul
| IsPos q => IsPos (pred q)
| IsNul => IsNeg
| IsNeg => IsNeg
end.
Fixpoint sub_mask (x y:positive) {struct y} : mask :=
match x, y with
| p~1, q~1 => double_mask (sub_mask p q)
| p~1, q~0 => succ_double_mask (sub_mask p q)
| p~1, 1 => IsPos p~0
| p~0, q~1 => succ_double_mask (sub_mask_carry p q)
| p~0, q~0 => double_mask (sub_mask p q)
| p~0, 1 => IsPos (pred_double p)
| 1, 1 => IsNul
| 1, _ => IsNeg
end
with sub_mask_carry (x y:positive) {struct y} : mask :=
match x, y with
| p~1, q~1 => succ_double_mask (sub_mask_carry p q)
| p~1, q~0 => double_mask (sub_mask p q)
| p~1, 1 => IsPos (pred_double p)
| p~0, q~1 => double_mask (sub_mask_carry p q)
| p~0, q~0 => succ_double_mask (sub_mask_carry p q)
| p~0, 1 => double_pred_mask p
| 1, _ => IsNeg
end.
Definition sub x y := match sub_mask x y with | IsPos z => z | _ => 1 end. Infix "-" := sub : positive_scope.
Fixpoint mul x y := match x with | p~1 => y + (mul p y)~0 | p~0 => (mul p y)~0 | 1 => y end. Infix "*" := mul : positive_scope.
Definition iter {A} (f:A -> A) : A -> positive -> A :=
fix iter_fix x n := match n with
| xH => f x
| xO n' => iter_fix (iter_fix x n') n'
| xI n' => f (iter_fix (iter_fix x n') n')
end.
Definition pow (x:positive) := iter (mul x) 1. Infix "^" := pow : positive_scope.
Fixpoint square p :=
match p with
| p~1 => (square p + p)~0~1
| p~0 => (square p)~0~0
| 1 => 1
end.
Definition div2 p :=
match p with
| 1 => 1
| p~0 => p
| p~1 => p
end.
Division by 2 rounded up
Definition div2_up p :=
match p with
| 1 => 1
| p~0 => p
| p~1 => succ p
end.
Fixpoint size_nat p : nat :=
match p with
| 1 => S O
| p~1 => S (size_nat p)
| p~0 => S (size_nat p)
end.
Same, with positive output
Fixpoint size p :=
match p with
| 1 => 1
| p~1 => succ (size p)
| p~0 => succ (size p)
end.
Fixpoint compare_cont (r:comparison) (x y:positive) {struct y} : comparison := match x, y with | p~1, q~1 => compare_cont r p q | p~1, q~0 => compare_cont Gt p q | p~1, 1 => Gt | p~0, q~1 => compare_cont Lt p q | p~0, q~0 => compare_cont r p q | p~0, 1 => Gt | 1, q~1 => Lt | 1, q~0 => Lt | 1, 1 => r end. Definition compare := compare_cont Eq. Infix "?=" := compare (at level 70, no associativity) : positive_scope. Definition min p p' := match p ?= p' with | Lt | Eq => p | Gt => p' end. Definition max p p' := match p ?= p' with | Lt | Eq => p' | Gt => p end.
Fixpoint eqb p q {struct q} := match p, q with | p~1, q~1 => eqb p q | p~0, q~0 => eqb p q | 1, 1 => true | _, _ => false end. Definition leb x y := match x ?= y with Gt => false | _ => true end. Definition ltb x y := match x ?= y with Lt => true | _ => false end. Infix "=?" := eqb (at level 70, no associativity) : positive_scope. Infix "<=?" := leb (at level 70, no associativity) : positive_scope. Infix "<?" := ltb (at level 70, no associativity) : positive_scope.
We proceed by blocks of two digits : if p is written qbb'
then sqrt(p) will be sqrt(q)~0 or sqrt(q)~1.
For deciding easily in which case we are, we store the remainder
(as a mask, since it can be null).
Instead of copy-pasting the following code four times, we
factorize as an auxiliary function, with f and g being either
xO or xI depending of the initial digits.
NB: (sub_mask (g (f 1)) 4) is a hack, morally it's g (f 0).
Definition sqrtrem_step (f g:positive->positive) p := match p with | (s, IsPos r) => let s' := s~0~1 in let r' := g (f r) in if s' <=? r' then (s~1, sub_mask r' s') else (s~0, IsPos r') | (s,_) => (s~0, sub_mask (g (f 1)) 1~0~0) end. Fixpoint sqrtrem p : positive * mask := match p with | 1 => (1,IsNul) | 1~0 => (1,IsPos 1) | 1~1 => (1,IsPos 1~0) | p~0~0 => sqrtrem_step xO xO (sqrtrem p) | p~0~1 => sqrtrem_step xO xI (sqrtrem p) | p~1~0 => sqrtrem_step xI xO (sqrtrem p) | p~1~1 => sqrtrem_step xI xI (sqrtrem p) end. Definition sqrt p := fst (sqrtrem p).
Definition divide p q := exists r, q = r*p. Notation "( p | q )" := (divide p q) (at level 0) : positive_scope.
Instead of the Euclid algorithm, we use here the Stein binary
algorithm, which is faster for this representation. This algorithm
is almost structural, but in the last cases we do some recursive
calls on subtraction, hence the need for a counter.
Fixpoint gcdn (n : nat) (a b : positive) : positive :=
match n with
| O => 1
| S n =>
match a,b with
| 1, _ => 1
| _, 1 => 1
| a~0, b~0 => (gcdn n a b)~0
| _ , b~0 => gcdn n a b
| a~0, _ => gcdn n a b
| a'~1, b'~1 =>
match a' ?= b' with
| Eq => a
| Lt => gcdn n (b'-a') a
| Gt => gcdn n (a'-b') b
end
end
end.
We'll show later that we need at most (log2(a.b)) loops
Definition gcd (a b : positive) := gcdn (size_nat a + size_nat b)%nat a b.
Generalized Gcd, also computing the division of a and b by the gcd
Set Printing Universes. Fixpoint ggcdn (n : nat) (a b : positive) : (positive*(positive*positive)) := match n with | O => (1,(a,b)) | S n => match a,b with | 1, _ => (1,(1,b)) | _, 1 => (1,(a,1)) | a~0, b~0 => let (g,p) := ggcdn n a b in (g~0,p) | _, b~0 => let '(g,(aa,bb)) := ggcdn n a b in (g,(aa, bb~0)) | a~0, _ => let '(g,(aa,bb)) := ggcdn n a b in (g,(aa~0, bb)) | a'~1, b'~1 => match a' ?= b' with | Eq => (a,(1,1)) | Lt => let '(g,(ba,aa)) := ggcdn n (b'-a') a in (g,(aa, aa + ba~0)) | Gt => let '(g,(ab,bb)) := ggcdn n (a'-b') b in (g,(bb + ab~0, bb)) end end end. Definition ggcd (a b: positive) := ggcdn (size_nat a + size_nat b)%nat a b.
Local copies of the not-yet-available N.double and N.succ_double
Definition Nsucc_double x := match x with | N0 => Npos 1 | Npos p => Npos p~1 end. Definition Ndouble n := match n with | N0 => N0 | Npos p => Npos p~0 end.
Operation over bits.
Logical or
Fixpoint lor (p q : positive) : positive :=
match p, q with
| 1, q~0 => q~1
| 1, _ => q
| p~0, 1 => p~1
| _, 1 => p
| p~0, q~0 => (lor p q)~0
| p~0, q~1 => (lor p q)~1
| p~1, q~0 => (lor p q)~1
| p~1, q~1 => (lor p q)~1
end.
Logical and
Fixpoint land (p q : positive) : N :=
match p, q with
| 1, q~0 => N0
| 1, _ => Npos 1
| p~0, 1 => N0
| _, 1 => Npos 1
| p~0, q~0 => Ndouble (land p q)
| p~0, q~1 => Ndouble (land p q)
| p~1, q~0 => Ndouble (land p q)
| p~1, q~1 => Nsucc_double (land p q)
end.
Logical diff
Fixpoint ldiff (p q:positive) : N :=
match p, q with
| 1, q~0 => Npos 1
| 1, _ => N0
| _~0, 1 => Npos p
| p~1, 1 => Npos (p~0)
| p~0, q~0 => Ndouble (ldiff p q)
| p~0, q~1 => Ndouble (ldiff p q)
| p~1, q~1 => Ndouble (ldiff p q)
| p~1, q~0 => Nsucc_double (ldiff p q)
end.
xor
Fixpoint lxor (p q:positive) : N :=
match p, q with
| 1, 1 => N0
| 1, q~0 => Npos (q~1)
| 1, q~1 => Npos (q~0)
| p~0, 1 => Npos (p~1)
| p~0, q~0 => Ndouble (lxor p q)
| p~0, q~1 => Nsucc_double (lxor p q)
| p~1, 1 => Npos (p~0)
| p~1, q~0 => Nsucc_double (lxor p q)
| p~1, q~1 => Ndouble (lxor p q)
end.
Shifts. NB: right shift of 1 stays at 1.
Definition shiftl_nat (p:positive) := nat_rect _ p (fun _ => xO). Definition shiftr_nat (p:positive) := nat_rect _ p (fun _ => div2). Definition shiftl (p:positive)(n:N) := match n with | N0 => p | Npos n => iter xO p n end. Definition shiftr (p:positive)(n:N) := match n with | N0 => p | Npos n => iter div2 p n end.
Checking whether a particular bit is set or not
Fixpoint testbit_nat (p:positive) : nat -> bool :=
match p with
| 1 => fun n => match n with
| O => true
| S _ => false
end
| p~0 => fun n => match n with
| O => false
| S n' => testbit_nat p n'
end
| p~1 => fun n => match n with
| O => true
| S n' => testbit_nat p n'
end
end.
Same, but with index in N
Fixpoint testbit (p:positive)(n:N) :=
match p, n with
| p~0, N0 => false
| _, N0 => true
| 1, _ => false
| p~0, Npos n => testbit p (pred_N n)
| p~1, Npos n => testbit p (pred_N n)
end.
Definition iter_op {A}(op:A->A->A) := fix iter (p:positive)(a:A) : A := match p with | 1 => a | p~0 => iter p (op a a) | p~1 => op a (iter p (op a a)) end. Definition to_nat (x:positive) : nat := iter_op plus x (S O). Arguments to_nat x: simpl never.
A version preserving positive numbers, and sending 0 to 1.
Fixpoint of_nat (n:nat) : positive := match n with | O => 1 | S O => 1 | S x => succ (of_nat x) end. (* Another version that converts [n] into [n+1] *) Fixpoint of_succ_nat (n:nat) : positive := match n with | O => 1 | S x => succ (of_succ_nat x) end.
Notation ten := 1~0~1~0. Fixpoint of_uint_acc (d:Decimal.uint)(acc:positive) := match d with | Decimal.Nil => acc | Decimal.D0 l => of_uint_acc l (mul ten acc) | Decimal.D1 l => of_uint_acc l (add 1 (mul ten acc)) | Decimal.D2 l => of_uint_acc l (add 1~0 (mul ten acc)) | Decimal.D3 l => of_uint_acc l (add 1~1 (mul ten acc)) | Decimal.D4 l => of_uint_acc l (add 1~0~0 (mul ten acc)) | Decimal.D5 l => of_uint_acc l (add 1~0~1 (mul ten acc)) | Decimal.D6 l => of_uint_acc l (add 1~1~0 (mul ten acc)) | Decimal.D7 l => of_uint_acc l (add 1~1~1 (mul ten acc)) | Decimal.D8 l => of_uint_acc l (add 1~0~0~0 (mul ten acc)) | Decimal.D9 l => of_uint_acc l (add 1~0~0~1 (mul ten acc)) end. Fixpoint of_uint (d:Decimal.uint) : N := match d with | Decimal.Nil => N0 | Decimal.D0 l => of_uint l | Decimal.D1 l => Npos (of_uint_acc l 1) | Decimal.D2 l => Npos (of_uint_acc l 1~0) | Decimal.D3 l => Npos (of_uint_acc l 1~1) | Decimal.D4 l => Npos (of_uint_acc l 1~0~0) | Decimal.D5 l => Npos (of_uint_acc l 1~0~1) | Decimal.D6 l => Npos (of_uint_acc l 1~1~0) | Decimal.D7 l => Npos (of_uint_acc l 1~1~1) | Decimal.D8 l => Npos (of_uint_acc l 1~0~0~0) | Decimal.D9 l => Npos (of_uint_acc l 1~0~0~1) end. Definition of_int (d:Decimal.int) : option positive := match d with | Decimal.Pos d => match of_uint d with | N0 => None | Npos p => Some p end | Decimal.Neg _ => None end. Fixpoint to_little_uint p := match p with | 1 => Decimal.D1 Decimal.Nil | p~1 => Decimal.Little.succ_double (to_little_uint p) | p~0 => Decimal.Little.double (to_little_uint p) end. Definition to_uint p := Decimal.rev (to_little_uint p). Definition to_int n := Decimal.Pos (to_uint n). Numeral Notation positive of_int to_uint : positive_scope. End Pos.
Re-export the notation for those who just Import BinPosDef
Numeral Notation positive Pos.of_int Pos.to_uint : positive_scope.