Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
Standard functions and combinators.
Proofs about them require functional extensionality and can be found in Combinators.
Author: Matthieu Sozeau Institution: LRI, CNRS UMR 8623 - University Paris Sud
The polymorphic identity function is defined in Datatypes.
Arguments id {A} x.
Function composition.
Definition compose {A B C} (g : B -> C) (f : A -> B) :=
  fun x : A => g (f x).

Hint Unfold compose : core.

Declare Scope program_scope.

Notation " g ∘ f " := (compose g f)
  (at level 40, left associativity) : program_scope.

Local Open Scope program_scope.
The non-dependent function space between A and B.
Definition arrow (A B : Type) := A -> B.
Logical implication.
Definition impl (A B : Prop) : Prop := A -> B.
The constant function const a always returns a.
Definition const {A B} (a : A) := fun _ : B => a.
The flip combinator reverses the first two arguments of a function.
Definition flip {A B C} (f : A -> B -> C) x y := f y x.
Application as a combinator.
Definition apply {A B} (f : A -> B) (x : A) := f x.
Curryfication of prod is defined in Logic.Datatypes.
Arguments prod_curry   {A B C} f p.
Arguments prod_uncurry {A B C} f x y.