Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo1. Require Import Ranalysis1. Require Import PSeries_reg. Require Import Div2. Require Import Even. Require Import Max. Require Import Omega. Local Open Scope nat_scope. Local Open Scope R_scope. Definition E1 (x:R) (N:nat) : R := sum_f_R0 (fun k:nat => / INR (fact k) * x ^ k) N.forall x : R, Un_cv (E1 x) (exp x)forall x : R, Un_cv (E1 x) (exp x)x:RUn_cv (E1 x) (proj1_sig (exist_exp x))unfold exp_in, Un_cv; unfold infinite_sum, E1; trivial. Qed. Definition Reste_E (x y:R) (N:nat) : R := sum_f_R0 (fun k:nat => sum_f_R0 (fun l:nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) ( pred (N - k))) (pred N).x, x0:Rforall e : exp_in x x0, Un_cv (E1 x) (proj1_sig (exist (fun l : R => exp_in x l) x0 e))forall (x y : R) (n : nat), (0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) nforall (x y : R) (n : nat), (0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) nx, y:Rn:natH:(0 < n)%natsum_f_R0 (fun k : nat => / INR (fact k) * x ^ k) n * sum_f_R0 (fun k : nat => / INR (fact k) * y ^ k) n - Reste_E x y n = sum_f_R0 (fun k : nat => / INR (fact k) * (x + y) ^ k) nx, y:Rn:natH:(0 < n)%natsum_f_R0 (fun k : nat => sum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (k - p)) * y ^ (k - p))) k) n + sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (n - l)) * y ^ (n - l))) (Init.Nat.pred (n - k))) (Init.Nat.pred n) - Reste_E x y n = sum_f_R0 (fun k : nat => / INR (fact k) * (x + y) ^ k) nx, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%natsum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (i - p)) * y ^ (i - p))) i = / INR (fact i) * (x + y) ^ ix, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%natsum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (i - p)) * y ^ (i - p))) i = / INR (fact i) * sum_f_R0 (fun i0 : nat => C i i0 * x ^ i0 * y ^ (i - i0)) ix, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%nat/ INR (fact i0) * x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0)) = C i i0 * x ^ i0 * y ^ (i - i0) * / INR (fact i)x, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%nat/ INR (fact i0) * (x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0))) = / (INR (fact i0) * INR (fact (i - i0))) * (x ^ i0 * (y ^ (i - i0) * 1))x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i) <> 0x, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%nat/ INR (fact i0) * (x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0))) = / INR (fact i0) * / INR (fact (i - i0)) * (x ^ i0 * y ^ (i - i0))x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i0) <> 0x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact (i - i0)) <> 0x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i) <> 0x, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i0) <> 0x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact (i - i0)) <> 0x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i) <> 0x, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact (i - i0)) <> 0x, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i) <> 0x, y:Rn:natH:(0 < n)%nat(0 < n)%natx, y:Rn:natH:(0 < n)%nati:natH0:(i <= n)%nati0:natH1:(i0 <= i)%natINR (fact i) <> 0x, y:Rn:natH:(0 < n)%nat(0 < n)%natapply H. Qed. Definition maj_Reste_E (x y:R) (N:nat) : R := 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) / Rsqr (INR (fact (div2 (pred N))))). (**********)x, y:Rn:natH:(0 < n)%nat(0 < n)%natforall N : nat, Nat.div2 (2 * N) = Nforall N : nat, Nat.div2 (2 * N) = NNat.div2 (2 * 0) = 0%natN:natHrecN:Nat.div2 (2 * N) = NNat.div2 (2 * S N) = S NN:natHrecN:Nat.div2 (2 * N) = NNat.div2 (2 * S N) = S NN:natHrecN:Nat.div2 (2 * N) = NNat.div2 (S (S (2 * N))) = S NN:natHrecN:Nat.div2 (2 * N) = NS (S (2 * N)) = (2 * S N)%natring. Qed.N:natHrecN:Nat.div2 (2 * N) = NS (S (2 * N)) = (2 * S N)%natforall N : nat, Nat.div2 (S (2 * N)) = Nforall N : nat, Nat.div2 (S (2 * N)) = NNat.div2 (S (2 * 0)) = 0%natN:natHrecN:Nat.div2 (S (2 * N)) = NNat.div2 (S (2 * S N)) = S NN:natHrecN:Nat.div2 (S (2 * N)) = NNat.div2 (S (2 * S N)) = S NN:natHrecN:Nat.div2 (S (2 * N)) = NNat.div2 (S (S (S (2 * N)))) = S NN:natHrecN:Nat.div2 (S (2 * N)) = NS (S (2 * N)) = (2 * S N)%natring. Qed.N:natHrecN:Nat.div2 (S (2 * N)) = NS (S (2 * N)) = (2 * S N)%natforall N : nat, (1 < N)%nat -> (0 < Nat.div2 N)%natforall N : nat, (1 < N)%nat -> (0 < Nat.div2 N)%natH:(1 < 0)%nat(0 < Nat.div2 0)%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(0 < Nat.div2 (S N))%natelim (lt_n_O _ H).H:(1 < 0)%nat(0 < Nat.div2 0)%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(1 < N)%nat \/ N = 1%nat -> (0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(1 < N)%nat \/ N = 1%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(1 < N)%nat \/ N = 1%nat -> (0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%nat(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:N = 1%nat(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%nat(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%natHeq:even N(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%natHeq:odd N(0 < Nat.div2 (S N))%natrewrite <- (even_div2 _ Heq); apply HrecN; assumption.N:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%natHeq:even N(0 < Nat.div2 (S N))%natrewrite <- (odd_div2 _ Heq); apply lt_O_Sn.N:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:(1 < N)%natHeq:odd N(0 < Nat.div2 (S N))%natrewrite H1; simpl; apply lt_O_Sn.N:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH0:(1 < N)%nat \/ N = 1%natH1:N = 1%nat(0 < Nat.div2 (S N))%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat(1 < N)%nat \/ N = 1%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natH1:1%nat = N(1 < 1)%nat \/ 1%nat = 1%natN:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natm:natH1:(2 <= N)%natH0:m = N(1 < N)%nat \/ N = 1%natleft; apply lt_le_trans with 2%nat; [ apply lt_n_Sn | apply H1 ]. Qed.N:natH:(1 < S N)%natHrecN:(1 < N)%nat -> (0 < Nat.div2 N)%natm:natH1:(2 <= N)%natH0:m = N(1 < N)%nat \/ N = 1%natforall (x y : R) (N : nat), (0 < N)%nat -> Rabs (Reste_E x y N) <= maj_Reste_E x y Nforall (x y : R) (N : nat), (0 < N)%nat -> Rabs (Reste_E x y N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RRabs (Reste_E x y N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RRabs (Reste_E x y N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RRabs (sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RRabs (sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)) <= sum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natRabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - n))) <= sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natsum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs (/ INR (fact (S (n0 + n))) * x ^ S (n0 + n) * (/ INR (fact (N - n0)) * y ^ (N - n0))) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs (/ INR (fact (S (n0 + n)))) * Rabs (x ^ S (n0 + n)) * (Rabs (/ INR (fact (N - n0))) * Rabs (y ^ (N - n0))) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs (/ INR (fact (S (n0 + n)))) * Rabs x ^ S (n0 + n) * (Rabs (/ INR (fact (N - n0))) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * (Rabs (/ INR (fact (N - n0))) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * (/ INR (fact (N - n0)) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) * / INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) * / INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= / INR (fact (N - n0)) * (M ^ (2 * N) * / INR (fact (S n0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) * (/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0))) <= / INR (fact (N - n0)) * (M ^ (2 * N) * / INR (fact (S n0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= / INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Rabs x ^ S (n0 + n)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) * / INR (fact (S (n0 + n))) <= / INR (fact (S n0)) * Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) * / INR (fact (S (n0 + n))) <= / INR (fact (S n0)) * Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) <= / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) <= / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 < INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natINR (fact (S n0)) <= INR (fact (S (n0 + n)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natINR (fact (S n0)) <= INR (fact (S (n0 + n)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n0 <= n0 + n)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= / INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ S (n0 + n) * Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) * Rabs x ^ S (n0 + n) <= Rabs y ^ (N - n0) * M ^ S (n0 + n)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Rabs y ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x ^ S (n0 + n) <= M ^ S (n0 + n)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x ^ S (n0 + n) <= M ^ S (n0 + n)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Rabs xx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs x <= Rmax (Rabs x) (Rabs y)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRmax (Rabs x) (Rabs y) <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRmax (Rabs x) (Rabs y) <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ S (n0 + n) * M ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= M ^ S (n0 + n)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) <= M ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat1 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) <= M ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat1 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) <= M ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y ^ (N - n0) <= M ^ (N - n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Rabs yx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRabs y <= Rmax (Rabs x) (Rabs y)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRmax (Rabs x) (Rabs y) <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natRmax (Rabs x) (Rabs y) <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ (N + S n) <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat1 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n <= 2 * N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n <= 2 * N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n <= N + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(S n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(S n <= S (Init.Nat.pred N))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natS (Init.Nat.pred N) = Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natS (Init.Nat.pred N) = Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N + S n)%nat = (S (n0 + n) + (N - n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natINR N + (INR n + 1) = INR n0 + INR n + 1 + (INR N - INR n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n0 <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n0 <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n0 <= Init.Nat.pred (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(S (Init.Nat.pred (N - n)) <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n + (N - n) <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(0 < N - n)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n + 0 < n + (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n + 0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (N - n0)) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S (n0 + n))) >= 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun i : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - i)) * M ^ (2 * N)) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natsum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n)) * M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natsum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= M ^ (2 * N) * sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natsum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))² * M ^ (2 * N)) (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))² * M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natM ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0)) <= M ^ (2 * N) * / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= M ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat0 <= 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat1 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat1 <= Mx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact (N - n0)) * / INR (fact (S n0)) <= / INR (fact (N - n0)) * / INR (fact n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat0 <= / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact (S n0)) <= / INR (fact n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact (S n0)) <= / INR (fact n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat0 < INR (fact n0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact n0) <= INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact n0) <= INR (fact (S n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(fact n0 <= fact (S n0))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n0 <= S n0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC (2 * N0) n0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC (2 * N0) n0 / INR (fact N) <= C N N0 / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N) * C (2 * N0) n0 <= / INR (fact N) * C N N0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat0 <= / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC (2 * N0) n0 <= C N N0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC (2 * N0) n0 <= C N N0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC (2 * N0) n0 <= C (2 * N0) N0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n0 <= 2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n0 <= Init.Nat.pred (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(S (Init.Nat.pred (N - n)) <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n + (N - n) <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(0 < N - n)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n + 0 < n + (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n + 0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact N0))² <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact N0))² = C N N0 / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact N0))² = C N N0 / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact N0) * INR (fact N0)) = INR (fact N) * / (INR (fact N0) * INR (fact (N - N0))) * / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N0) * / INR (fact N0) = INR (fact N) * (/ INR (fact N0) * / INR (fact (N - N0))) * / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * / INR (fact (N - N0)) * INR (fact N) * / INR (fact N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * (/ INR (fact (N - N0)) * (INR (fact N) * / INR (fact N)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * (/ INR (fact (N - N0)) * 1)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * / INR (fact N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natN0 = (N - N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natN0 = (N - N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natN0 = (N0 + N0 - N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N0 + N0)%nat = Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N0 + N0)%nat = Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat(N0 + N0)%nat = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natC N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) * / (INR (fact n0) * INR (fact (N - n0))) * / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact n0) * INR (fact (N - n0))) * INR (fact N) * / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact n0) * INR (fact (N - n0))) * (INR (fact N) * / INR (fact N)) = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ (INR (fact n0) * INR (fact (N - n0))) * 1 = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%nat/ INR (fact n0) * / INR (fact (N - n0)) * 1 = / INR (fact n0) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact n0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact n0) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact (N - n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = (2 * N0)%natINR (fact N) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) <= C (S N) (S N0) / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S N)) * C (S N) (S n0) <= / INR (fact (S N)) * C (S N) (S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)0 <= / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) <= C (S N) (S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) <= C (S N) (S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%nat -> C (S N) (S n0) <= C (S N) (S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(S n0 <= 2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n0 <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n0 <= Init.Nat.pred (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred (N - n) <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(S (Init.Nat.pred (N - n)) <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n + (N - n) <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N <= S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(0 < N - n)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n + 0 < n + (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n + 0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%nat -> C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natC (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)))² <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)))² <= / (INR (fact (S N0)))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ (INR (fact (S N0)) * INR (fact (S N0))) = INR (fact (S N)) * / (INR (fact (S N0)) * INR (fact (S N - S N0))) * / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ INR (fact (S N0)) * / INR (fact (S N0)) = INR (fact (S N)) * (/ INR (fact (S N0)) * / INR (fact (S N - S N0))) * / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ INR (fact (S N0)) * / INR (fact (S N0)) = INR (fact (S N)) * (/ INR (fact (S N0)) * / INR (fact (S N0))) * / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * / INR (fact (S N0)) * INR (fact (S N)) * / INR (fact (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * (/ INR (fact (S N0)) * (INR (fact (S N)) * / INR (fact (S N))))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * (/ INR (fact (S N0)) * 1)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natS N0 = (S N0 + S N0 - S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(S N0 + S N0)%nat = S Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%nat(S N0 + S N0)%nat = S Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N - S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)H5:S N = (2 * S N0)%natINR (fact (S N0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)S N = (2 * S N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) * / (INR (fact (S n0)) * INR (fact (S N - S n0))) * / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ (INR (fact (S n0)) * INR (fact (S N - S n0))) * INR (fact (S N)) * / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ (INR (fact (S n0)) * INR (fact (S N - S n0))) * 1 = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)/ INR (fact (S n0)) * / INR (fact (S N - S n0)) = / INR (fact (S n0)) * / INR (fact (N - n0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N - S n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N - S n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N - S n0)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natn0:natH1:(n0 <= Init.Nat.pred (N - n))%natH2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH3:N = (2 * N0)%nat \/ N = S (2 * N0)H4:N = S (2 * N0)INR (fact (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) / (INR (fact (Nat.div2 (Init.Nat.pred N))))²)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) * / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RM ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) * (/ (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R0 <= 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natsum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n)) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat/ (INR (fact (Nat.div2 (S N))))² * INR (S (Init.Nat.pred (N - n))) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat/ (INR (fact (Nat.div2 (S N))))² * INR (N - n) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(N - n)%nat = S (Init.Nat.pred (N - n))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(0 < N - n)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n + 0 < n + (N - n))%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n + 0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(0 < N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natINR (N - n) * / (INR (fact (Nat.div2 (S N))))² <= INR N * / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat/ (INR (fact (Nat.div2 (S N))))² * INR (N - n) <= / (INR (fact (Nat.div2 (S N))))² * INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat0 <= / (INR (fact (Nat.div2 (S N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natINR (N - n) <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natINR (fact (Nat.div2 (S N))) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natINR (N - n) <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%natINR (N - n) <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(N - n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n + (N - n) <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(N <= n + N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(n <= Init.Nat.pred N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rn:natH0:(n <= Init.Nat.pred N)%nat(Init.Nat.pred N <= N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):Rsum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RINR N * / (INR (fact (Nat.div2 (S N))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N)) -> INR N * / (INR (fact (Nat.div2 (S N))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N * / (INR (fact (S (Nat.div2 (Init.Nat.pred N)))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N * / ((INR (fact (Nat.div2 (Init.Nat.pred N))))² * (INR (S (Nat.div2 (Init.Nat.pred N))))²) * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N * (/ (INR (fact (Nat.div2 (Init.Nat.pred N))))² * / (INR (S (Nat.div2 (Init.Nat.pred N))))²) * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))0 <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))/ (INR (S (Nat.div2 (Init.Nat.pred N))))² * (INR N * INR N) <= 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))/ (INR (S (Nat.div2 (Init.Nat.pred N))))² * (INR N * INR N) <= 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))/ (INR (Nat.div2 (S N)))² * (INR N * INR N) <= 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N)) -> / (INR (Nat.div2 (S N)))² * (INR N * INR N) <= 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 < (INR (Nat.div2 (S N)))²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR (Nat.div2 (S N)) <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%natFalsex, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%nat(1 < S N)%nat -> Falsex, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%nat(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%natH3:(1 < S N)%natH4:(0 < Nat.div2 (S N))%natFalsex, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%nat(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))H2:Nat.div2 (S N) = 0%nat(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² * / (INR (Nat.div2 (S N)))² * INR N * INR N <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))1 * INR N * INR N <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR N * INR N <= (INR (Nat.div2 (S N)))² * 4x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR N * INR N <= (INR (Nat.div2 (S N)))² * 2²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR N * INR N <= (INR (Nat.div2 (S N)) * 2)²x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR N <= INR (Nat.div2 (S N)) * 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR (Nat.div2 (S N)) * 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))INR N <= INR (Nat.div2 (S N)) * INR 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR (Nat.div2 (S N)) * 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR Nx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR (Nat.div2 (S N)) * 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 <= INR (Nat.div2 (S N)) * 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 < INR (Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 < 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 < 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))0 < 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(1 < S N)%nat -> (INR (Nat.div2 (S N)))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:INR N <= INR (2 * Nat.div2 (S N))(1 < S N)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = (2 * N0)%natINR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = (2 * N0)%natINR N <= INR (2 * Nat.div2 (S (2 * N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = (2 * N0)%natINR N <= INR (2 * N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (S (S (2 * N0))))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * Nat.div2 (2 * S N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR N <= INR (2 * S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR (S (2 * N0)) <= INR (2 * S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR 2 * INR N0 + 1 <= INR 2 * INR (S N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR 2 * INR N0 + 1 <= INR 2 * (INR N0 + 1)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)INR 2 * INR N0 + 1 <= INR 2 * INR N0 + INR 2 * 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)1 <= INR 2 * 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)1 <= INR 2x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)1 <= 1 + 1x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH2:N = (2 * N0)%nat \/ N = S (2 * N0)H3:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natNat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%nat -> Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natNat.div2 (S (2 * N0)) = S (Nat.div2 (Init.Nat.pred (2 * N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natN0 = S (Nat.div2 (Init.Nat.pred (2 * N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natN0 = S (Nat.div2 (Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (S (2 * Init.Nat.pred N0)) = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natN0 = S (Nat.div2 (S (2 * Init.Nat.pred N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (S (2 * Init.Nat.pred N0)) = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natN0 = S (Init.Nat.pred N0)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (S (2 * Init.Nat.pred N0)) = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (S (2 * Init.Nat.pred N0)) = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%natH3:(0 < N0)%natS (S (2 * Init.Nat.pred N0)) = (2 * N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = (2 * N0)%nat(0 < N0)%natx, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S (S (2 * N0))) = S (Nat.div2 (Init.Nat.pred (S (2 * N0))))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (S (S (2 * N0))) = S (Nat.div2 (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)Nat.div2 (2 * S N0) = S (Nat.div2 (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)S N0 = S N0x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RH0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)N0:natH1:N = (2 * N0)%nat \/ N = S (2 * N0)H2:N = S (2 * N0)(2 * S N0)%nat = S (S (2 * N0))x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)apply S_pred with 0%nat; apply H. Qed.x, y:RN:natH:(0 < N)%natM:=Rmax 1 (Rmax (Rabs x) (Rabs y)):RN = S (Init.Nat.pred N)forall x y : R, Un_cv (maj_Reste_E x y) 0forall x y : R, Un_cv (maj_Reste_E x y) 0x, y:RH:Un_cv (Majxy x y) 0Un_cv (maj_Reste_E x y) 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0eps:RH0:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n : nat, (n >= N0)%nat -> R_dist (Majxy x y n) 0 < eps / 4exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Majxy x y n0) 0 < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natR_dist (maj_Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²)) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 4x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))² <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))² <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * (/ INR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n)))) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 < INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n))) <= INR (fact (Nat.div2 (Init.Nat.pred n))) * 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n))) <= INR (fact (Nat.div2 (Init.Nat.pred n))) * 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(1 <= fact (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(0 < fact (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR 0 < INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%nat -> (2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%nat(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%nat(2 * (2 * N1) <= 4 * S (Nat.div2 (Init.Nat.pred (2 * N1))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%nat(2 * (2 * N1) <= 4 * S (Nat.div2 (S (2 * Init.Nat.pred N1))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%nat(2 * (2 * N1) <= 4 * S (Init.Nat.pred N1))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(0 < 2)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(2 <= Nat.max (2 * S N0) 2)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = (2 * N1)%natH7:(0 < n)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * S (2 * N1) <= 4 * S (Nat.div2 (Init.Nat.pred (S (2 * N1)))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * S (2 * N1) <= 4 * S (Nat.div2 (2 * N1)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * S (2 * N1) <= 4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * S (2 * N1) <= 2 * (2 * S N1))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * (2 * S N1))%nat = (4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(S (2 * N1) <= 2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * (2 * S N1))%nat = (4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(S (2 * N1) <= S (S (2 * N1)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)S (S (2 * N1)) = (2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * (2 * S N1))%nat = (4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)S (S (2 * N1)) = (2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * (2 * S N1))%nat = (4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * (2 * S N1))%nat = (4 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH5:n = (2 * N1)%nat \/ n = S (2 * N1)H6:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natINR (fact (Nat.div2 (Init.Nat.pred n))) <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 < / 4x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ 4 * (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))) < / 4 * epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat/ 4 * (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))) < / 4 * epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < / 4 * epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) < eps * / 4x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) < eps * / 4x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(N0 <= Nat.div2 (Init.Nat.pred n))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%nat -> (N0 <= Nat.div2 (Init.Nat.pred n))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat(S N0 <= S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat0 < INR 2x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natINR 2 * INR (S N0) <= INR 2 * INR (S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natINR 2 * INR (S N0) <= INR 2 * INR (S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat(2 * S N0 <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%nat(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%nat -> (n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(2 * N1 <= 2 * S (Nat.div2 (Init.Nat.pred (2 * N1))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(N1 <= S (Nat.div2 (Init.Nat.pred (2 * N1))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(N1 <= S (Nat.div2 (S (2 * Init.Nat.pred N1))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(N1 <= S (Init.Nat.pred N1))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%nat(N1 <= N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natN1 = S (Init.Nat.pred N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natN1 = S (Init.Nat.pred N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (2 * Init.Nat.pred N1) = Init.Nat.pred (S (S (2 * Init.Nat.pred N1)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (S (2 * Init.Nat.pred N1)) = (2 * N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (S (2 * Init.Nat.pred N1)) = (2 * N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (S (2 * Init.Nat.pred N1)) = (2 * S (Init.Nat.pred N1))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (Init.Nat.pred N1) = N1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natH8:(0 < N1)%natS (Init.Nat.pred N1) = N1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natINR 0 < INR N1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat0 < INR 2x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natINR 2 * INR 0 < INR 2 * INR N1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%natINR 2 * INR 0 < INR 2 * INR N1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat0 < INR (2 * N1)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < 2 * N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(0 < 2)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(2 <= Nat.max (2 * S N0) 2)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = (2 * N1)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(S (2 * N1) <= 2 * S (Nat.div2 (Init.Nat.pred (S (2 * N1)))))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(S (2 * N1) <= 2 * S (Nat.div2 (2 * N1)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(S (2 * N1) <= 2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(S (2 * N1) <= S (S (2 * N1)))%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)S (S (2 * N1)) = (2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)S (S (2 * N1)) = (2 * S N1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natH4:(2 * S N0 <= n)%natH5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)N1:natH6:n = (2 * N1)%nat \/ n = S (2 * N1)H7:n = S (2 * N1)(2 * N1)%nat = Init.Nat.pred (S (2 * N1))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(2 * S N0 <= Nat.max (2 * S N0) 2)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat(Nat.max (2 * S N0) 2 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%natRmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 <> 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 4x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * / (INR (fact (Nat.div2 (Init.Nat.pred n))))²x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * / (INR (fact (Nat.div2 (Init.Nat.pred n))))²x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= 1x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; apply INR_fact_neq_0. Qed. (**********)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0eps:RH0:eps > 0H1:0 < eps / 4N0:natH2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4n:natH3:(n >= Nat.max (2 * S N0) 2)%nat0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²forall x y : R, Un_cv (Reste_E x y) 0forall x y : R, Un_cv (Reste_E x y) 0x, y:RH:Un_cv (maj_Reste_E x y) 0Un_cv (Reste_E x y) 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n : nat, (n >= x0)%nat -> R_dist (maj_Reste_E x y n) 0 < epsexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natRabs (Reste_E x y n) < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natRabs (Reste_E x y n) <= maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(0 < n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(0 < 1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= Nat.max x0 1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 < epsx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(n >= x0)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(x0 <= Nat.max x0 1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natR_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natmaj_Reste_E x y n >= 0x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat0 <= Rabs (Reste_E x y n)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natRabs (Reste_E x y n) <= maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%natRabs (Reste_E x y n) <= maj_Reste_E x y nx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(0 < n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(0 < 1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= n)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(1 <= Nat.max x0 1)%natx, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natapply H2. Qed. (**********)x, y:RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0eps:RH0:eps > 0x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < epsn:natH2:(n >= Nat.max x0 1)%nat(Nat.max x0 1 <= n)%natforall x y : R, exp (x + y) = exp x * exp yforall x y : R, exp (x + y) = exp x * exp yx, y:RH0:Un_cv (E1 x) (exp x)exp (x + y) = exp x * exp yx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)exp (x + y) = exp x * exp yx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))exp (x + y) = exp x * exp yx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))Un_cv ?Un (exp (x + y))x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))Un_cv ?Un (exp x * exp y)x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))Un_cv (E1 (x + y)) (exp x * exp y)x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)Un_cv (E1 (x + y)) (exp x * exp y)x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:Un_cv (fun i : nat => (fun i0 : nat => E1 x i0 * E1 y i0) i - Reste_E x y i) (exp x * exp y - 0)Un_cv (E1 (x + y)) (exp x * exp y)x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < eps0eps:RH4:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 (x + y) n) (exp x * exp y) < epsx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n : nat, (n >= x0)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < epsexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 (x + y) n) (exp x * exp y) < epsx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%natR_dist (E1 (x + y) n) (exp x * exp y) < epsx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%natR_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y) < epsx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < epsn:natH6:(n >= S x0)%natR_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y) < epsx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < epsn:natH6:(n >= S x0)%nat(n >= x0)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < epsn:natH6:(n >= S x0)%nat(x0 <= S x0)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < epsn:natH6:(n >= S x0)%nat(S x0 <= n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < epsn:natH6:(n >= S x0)%nat(S x0 <= n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < n)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(0 < S x0)%natx, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(S x0 <= n)%natapply H6. Qed. (**********)x, y:RH0:Un_cv (E1 x) (exp x)H:Un_cv (E1 y) (exp y)H1:Un_cv (E1 (x + y)) (exp (x + y))H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0eps:RH4:eps > 0x0:natH5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < epsn:natH6:(n >= S x0)%nat(S x0 <= n)%natforall x : R, 0 < x -> 0 < exp xforall x : R, 0 < x -> 0 < exp xx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> R0 < exp xx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x) -> 0 < exp xx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)0 < sum_f_R0 An 0x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)sum_f_R0 An 0 <= exp xx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)sum_f_R0 An 0 <= exp xx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)Un_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)forall n : nat, 0 <= An nx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)forall n : nat, 0 <= An nx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)n:nat0 < / INR (fact n)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)n:nat0 < x ^ nx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RH0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)n:nat0 < x ^ nx:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> RUn_cv (fun n : nat => sum_f_R0 An n) (exp x)unfold exp_in; unfold infinite_sum, Un_cv; trivial. Qed. (**********)x:RH:0 < xAn:=fun N : nat => / INR (fact N) * x ^ N:nat -> Rx0:Rforall e : exp_in x x0, Un_cv (fun n : nat => sum_f_R0 An n) (proj1_sig (exist (fun l : R => exp_in x l) x0 e))forall x : R, 0 < exp xforall x : R, 0 < exp xx:RHlt:0 < x0 < exp x0 < exp 0x:RHgt:0 > x0 < exp x0 < exp 0x:RHgt:0 > x0 < exp xx:RHgt:0 > x0 < exp xx:RHgt:0 > x0 < 1 / exp (- x)x:RHgt:0 > x1 / exp (- x) = exp xx:RHgt:0 > x0 < 1x:RHgt:0 > x0 < / exp (- x)x:RHgt:0 > x1 / exp (- x) = exp xx:RHgt:0 > x0 < / exp (- x)x:RHgt:0 > x1 / exp (- x) = exp xx:RHgt:0 > x0 < - xx:RHgt:0 > x1 / exp (- x) = exp xx:RHgt:0 > x1 / exp (- x) = exp xx:RHgt:0 > xexp (- x) <> 0 -> 1 / exp (- x) = exp xx:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) * (1 * / exp (- x)) = exp (- x) * exp xx:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 01 = exp (- x) * exp xx:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 01 = exp (- x + x)x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (- x) <> 0exp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xexp (- x) <> 0x:RHgt:0 > xH:exp (x + - x) = exp x * exp (- x)exp (- x) <> 0x:RHgt:0 > xH:1 = exp x * exp (- x)exp (- x) <> 0x:RHgt:0 > xH:1 = exp x * 0H0:exp (- x) = 0Falseelim R1_neq_R0; assumption. Qed. (* ((exp h)-1)/h -> 0 quand h->0 *)x:RHgt:0 > xH:1 = 0H0:exp (- x) = 0Falsederivable_pt_lim exp 0 1derivable_pt_lim exp 0 1eps:RH:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> Rexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fn -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fn(forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}(forall n : nat, continuity (fn n)) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:continuity_pt (SFL fn cv) 0exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs ((exp (0 + h) - exp 0) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs ((exp h - 1) / h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (SFL fn cv h - 1) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (SFL fn cv h - SFL fn cv 0) < epseps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}D_x no_cond 0 h /\ Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}D_x no_cond 0 heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Trueeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}0 <> heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}0 <> heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}Rabs (h - 0) < alpeps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv 0 = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}(let (a, _) := cv 0 in a) = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n : nat, continuity (fn n)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xx = 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n : nat, continuity (fn n)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xUn_cv ?Un xeps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n : nat, continuity (fn n)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xUn_cv ?Un 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n : nat, continuity (fn n)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xUn_cv (fun N : nat => SP fn N 0) 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n : nat, continuity (fn n)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xforall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => fn k 0) n) 1 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natR_dist (sum_f_R0 (fun k : nat => fn k 0) n) 1 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natRabs (fn 0%nat 0 + sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) - 1) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natRabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) + fn 0%nat 0 - 1) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natRabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) + 1 - 1) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natRabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natRabs 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat0 = sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat0 = sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n1 : nat, continuity (fn n1)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natn0:natH10:(n0 <= Init.Nat.pred n)%natfn (S n0) 0 = 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n1 : nat, continuity (fn n1)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natn0:natH10:(n0 <= Init.Nat.pred n)%nat0 ^ S n0 / INR (fact (S (S n0))) = 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n1 : nat, continuity (fn n1)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%natn0:natH10:(n0 <= Init.Nat.pred n)%nat0 * 0 ^ n0 / INR (fact n0 + n0 * fact n0 + (fact n0 + n0 * fact n0 + n0 * (fact n0 + n0 * fact n0))) = 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = fn 0%nat 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat1 = 1 / 1eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x0 : R, continuity_pt (SFL fn cv) x0H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x:RHu:Un_cv (fun N : nat => SP fn N 0) xeps0:RH8:eps0 > 0n:natH9:(n >= 1)%nat(0 < n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}SFL fn cv h = (exp h - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)H1:forall x : R, continuity_pt (SFL fn cv) xH2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)H4:alp > 0H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}(let (a, _) := cv h in a) = (proj1_sig (exist_exp h) - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:exp_in h xx0 = (x - 1) / heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:exp_in h xUn_cv ?Un x0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:exp_in h xUn_cv ?Un ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:exp_in h xUn_cv (fun N : nat => SP fn N h) ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:exp_in h xeps0:RH8:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs h -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps0 * Rabs hexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natR_dist (SP fn n h) ((x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (SP fn n h - (x - 1) / h) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%nat0 < Rabs heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs h * Rabs (SP fn n h - (x - 1) / h) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs h * Rabs (SP fn n h - (x - 1) / h) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (h * (SP fn n h - (x - 1) / h)) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (h * SP fn n h - h * ((x - 1) / h)) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (h * SP fn n h - (x - 1)) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (h * SP fn n h - (x - 1)) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x) < Rabs h * eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natRabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x) < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(N0 <= S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(N0 <= S N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(S N0 <= S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(S N0 <= S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat/ INR (fact 0) * h ^ 0 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) - x = h * SP fn n h - (x - 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + - (x + - (1))eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + (- x + - - (1))eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + (- x + 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat- x + (1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n))) = h * SP fn n h + (- x + 1)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat- x + (1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n))) = - x + 1 + h * SP fn n heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) = h * SP fn n heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = h * SP fn n heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = h * sum_f_R0 (fun k : nat => fn k h) neps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%natsum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = sum_f_R0 (fun i : nat => fn i h * h) neps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nati:natH12:(i <= n)%nat/ INR (fact (S i)) * h ^ S i = fn i h * heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nati:natH12:(i <= n)%nat/ INR (fact (S i)) * h ^ S i = h ^ i / INR (fact (S i)) * heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nati:natH12:(i <= n)%nat/ INR (fact (S i)) * (h * h ^ i) = h ^ i / INR (fact (S i)) * heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nati:natH12:(i <= n)%nath * h ^ i = h ^ S ieps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nati:natH12:(i <= n)%nath * h ^ i = h ^ S ieps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat1 = / INR (fact 0) * h ^ 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs hn:natH11:(n >= N0)%nat(0 < S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * ((x - 1) * / h)eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%natx - 1 = h * (x - 1) * / heps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n0 : nat, continuity (fn n0)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1eps0:RH8:eps0 > 0H9:0 < eps0 * Rabs hN0:natH10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs hn:natH11:(n >= N0)%nath <> 0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0 * Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}H0:forall n : nat, continuity (fn n)H1:forall x1 : R, continuity_pt (SFL fn cv) x1H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)alp:RH3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)H4:alp > 0H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < epsh:RH6:h <> 0H7:Rabs h < {| pos := alp; cond_pos := H4 |}x0:RHu:Un_cv (fun N : nat => SP fn N h) x0x:RHexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1eps0:RH8:eps0 > 00 < Rabs heps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}H0:forall n : nat, continuity (fn n)continuity (SFL fn cv)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall n : nat, continuity (fn n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natcontinuity (fun x : R => x ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natcontinuity (pow_fct n / fct_cte (INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natcontinuity (pow_fct n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natcontinuity (fct_cte (INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natforall x : R, fct_cte (INR (fact (S n))) x <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natcontinuity (fct_cte (INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natforall x : R, fct_cte (INR (fact (S n))) x <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fncv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}n:natforall x : R, fct_cte (INR (fact (S n))) x <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RX:CVN_R fnforall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RCVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0CVN_R fneps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0forall r : posreal, CVN_r fn reps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l} -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) xUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) xUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) xeps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) xforall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealx:Rp:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) xforall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs (y - 0) < rRabs (fn n y) <= r ^ n / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rRabs (fn n y) <= r ^ n / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rRabs (y ^ n / INR (fact (S n))) <= r ^ n / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rRabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n)) -> Rabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs (y ^ n) * / INR (fact (S n)) <= r ^ n * / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) * Rabs (y ^ n) <= / INR (fact (S n)) * r ^ neps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))0 <= / INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs (y ^ n) <= r ^ neps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs (y ^ n) <= r ^ neps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs y ^ n <= r ^ neps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))Rabs (Rabs y) <= reps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < rH2:0 < INR (fact (S n))/ INR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealx:Rp:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) xn:naty:RH1:Rabs y < r0 < INR (fact (S n))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0 -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0forall n : nat, Rabs (r ^ n / INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealH1:(r : R) <> 0n:natr ^ n / INR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealH1:(r : R) <> 0n:natr ^ n <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealH1:(r : R) <> 0n:nat/ INR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0r:posrealH1:(r : R) <> 0n:nat/ INR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps0r:posrealH1:(r : R) <> 0Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n : nat, (n >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps0 / rexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%natR_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natR_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:R_dist (Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) 0 < eps0 / rR_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < eps0 / rR_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rR_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r * / INR (fact (S (S n))) * / / INR (fact (S n))) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r0 < / reps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ r * (r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < / r * eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ r * (r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < / r * eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r1 * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < / r * eps0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 * / reps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n * / INR (fact (S (S n)))) * / Rabs (r ^ n * / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * Rabs (/ INR (fact (S (S n)))) * / (Rabs (r ^ n) * Rabs (/ INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * / Rabs (INR (fact (S (S n)))) * / (Rabs (r ^ n) * / Rabs (INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * / Rabs (INR (fact (S (S n)))) * (/ Rabs (r ^ n) * / / Rabs (INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * / / INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * / / INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * / INR (fact (S (S n))) * INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ INR (fact (S (S n))) * r * INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ INR (fact (S (S n))) * r * INR (fact (S n)) = / INR (fact (S (S n))) * r ^ S n * (/ r ^ n * INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ INR (fact (S (S n))) * (r * INR (fact (S n))) = / INR (fact (S (S n))) * (r ^ S n * (/ r ^ n * INR (fact (S n))))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr * INR (fact (S n)) = r ^ S n * (/ r ^ n * INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) * r = r ^ S n * (/ r ^ n * INR (fact (S n)))eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) * r = INR (fact (S n)) * (r ^ S n * / r ^ n)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr = r ^ S n * / r ^ neps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr = r * r ^ n * / r ^ neps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr = r * 1eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rr ^ S n >= 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rRabs (r ^ n) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r/ Rabs (INR (fact (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S n)) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nathyp_sn:(S n >= N0)%natH6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / rINR (fact (S (S n))) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(S n >= N0)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(N0 <= n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(n <= S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1r:posrealH1:(r : R) <> 0eps0:RH2:eps0 > 0H3:0 < eps0 / rN0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / rn:natH5:(n >= N0)%nat(n <= S n)%nateps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0assert (H1 := cond_pos r); red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). Qed. (**********)eps:RH:0 < epsfn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> RH0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0r:posreal(r : R) <> 0forall x : R, derivable_pt_lim exp x (exp x)forall x : R, derivable_pt_lim exp x (exp x)x:RH0:derivable_pt_lim exp 0 1derivable_pt_lim exp x (exp x)x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0eps:RH:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps / exp xexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delRabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp (0 + h) - exp 0) / h - 1) < eps / exp xRabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xRabs ((exp (x + h) - exp x) / h - exp x) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xRabs (exp x * ((exp h - 1) / h - 1)) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * Rabs ((exp h - 1) / h - 1) < epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp x0 < / exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp x/ exp x * (exp x * Rabs ((exp h - 1) / h - 1)) < / exp x * epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp x/ exp x * (exp x * Rabs ((exp h - 1) / h - 1)) < / exp x * epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp x1 * Rabs ((exp h - 1) / h - 1) < / exp x * epsx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x <> 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xRabs ((exp h - 1) / h - 1) < eps * / exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x <> 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x <> 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x >= 0x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp xx:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp xexp x * ((exp h - 1) / h) - exp x * 1 = (exp (x + h) - exp x) / h - exp xrewrite Rmult_1_r; rewrite exp_plus; reflexivity. Qed.x:RH0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0eps:RH:0 < epsH1:0 < eps / exp xdel:posrealH2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp xh:RH3:h <> 0H4:Rabs h < delH5:Rabs ((exp h - 1) / h - 1) < eps / exp x(exp x * exp h - exp x * 1) * / h - exp x = (exp (x + h) - exp x) * / h - exp x