Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import PSeries_reg.
Require Import Div2.
Require Import Even.
Require Import Max.
Require Import Omega.
Local Open Scope nat_scope.
Local Open Scope R_scope.

Definition E1 (x:R) (N:nat) : R :=
  sum_f_R0 (fun k:nat => / INR (fact k) * x ^ k) N.


forall x : R, Un_cv (E1 x) (exp x)

forall x : R, Un_cv (E1 x) (exp x)
x:R

Un_cv (E1 x) (proj1_sig (exist_exp x))
x, x0:R

forall e : exp_in x x0, Un_cv (E1 x) (proj1_sig (exist (fun l : R => exp_in x l) x0 e))
unfold exp_in, Un_cv; unfold infinite_sum, E1; trivial. Qed. Definition Reste_E (x y:R) (N:nat) : R := sum_f_R0 (fun k:nat => sum_f_R0 (fun l:nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) ( pred (N - k))) (pred N).

forall (x y : R) (n : nat), (0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) n

forall (x y : R) (n : nat), (0 < n)%nat -> E1 x n * E1 y n - Reste_E x y n = E1 (x + y) n
x, y:R
n:nat
H:(0 < n)%nat

sum_f_R0 (fun k : nat => / INR (fact k) * x ^ k) n * sum_f_R0 (fun k : nat => / INR (fact k) * y ^ k) n - Reste_E x y n = sum_f_R0 (fun k : nat => / INR (fact k) * (x + y) ^ k) n
x, y:R
n:nat
H:(0 < n)%nat

sum_f_R0 (fun k : nat => sum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (k - p)) * y ^ (k - p))) k) n + sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (n - l)) * y ^ (n - l))) (Init.Nat.pred (n - k))) (Init.Nat.pred n) - Reste_E x y n = sum_f_R0 (fun k : nat => / INR (fact k) * (x + y) ^ k) n
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat

sum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (i - p)) * y ^ (i - p))) i = / INR (fact i) * (x + y) ^ i
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat

sum_f_R0 (fun p : nat => / INR (fact p) * x ^ p * (/ INR (fact (i - p)) * y ^ (i - p))) i = / INR (fact i) * sum_f_R0 (fun i0 : nat => C i i0 * x ^ i0 * y ^ (i - i0)) i
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

/ INR (fact i0) * x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0)) = C i i0 * x ^ i0 * y ^ (i - i0) * / INR (fact i)
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

/ INR (fact i0) * (x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0))) = / (INR (fact i0) * INR (fact (i - i0))) * (x ^ i0 * (y ^ (i - i0) * 1))
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact i) <> 0
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

/ INR (fact i0) * (x ^ i0 * (/ INR (fact (i - i0)) * y ^ (i - i0))) = / INR (fact i0) * / INR (fact (i - i0)) * (x ^ i0 * y ^ (i - i0))
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact i0) <> 0
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact (i - i0)) <> 0
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact i) <> 0
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

INR (fact i0) <> 0
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact (i - i0)) <> 0
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact i) <> 0
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

INR (fact (i - i0)) <> 0
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat
INR (fact i) <> 0
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat
i:nat
H0:(i <= n)%nat
i0:nat
H1:(i0 <= i)%nat

INR (fact i) <> 0
x, y:R
n:nat
H:(0 < n)%nat
(0 < n)%nat
x, y:R
n:nat
H:(0 < n)%nat

(0 < n)%nat
apply H. Qed. Definition maj_Reste_E (x y:R) (N:nat) : R := 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) / Rsqr (INR (fact (div2 (pred N))))). (**********)

forall N : nat, Nat.div2 (2 * N) = N

forall N : nat, Nat.div2 (2 * N) = N

Nat.div2 (2 * 0) = 0%nat
N:nat
HrecN:Nat.div2 (2 * N) = N
Nat.div2 (2 * S N) = S N
N:nat
HrecN:Nat.div2 (2 * N) = N

Nat.div2 (2 * S N) = S N
N:nat
HrecN:Nat.div2 (2 * N) = N

Nat.div2 (S (S (2 * N))) = S N
N:nat
HrecN:Nat.div2 (2 * N) = N
S (S (2 * N)) = (2 * S N)%nat
N:nat
HrecN:Nat.div2 (2 * N) = N

S (S (2 * N)) = (2 * S N)%nat
ring. Qed.

forall N : nat, Nat.div2 (S (2 * N)) = N

forall N : nat, Nat.div2 (S (2 * N)) = N

Nat.div2 (S (2 * 0)) = 0%nat
N:nat
HrecN:Nat.div2 (S (2 * N)) = N
Nat.div2 (S (2 * S N)) = S N
N:nat
HrecN:Nat.div2 (S (2 * N)) = N

Nat.div2 (S (2 * S N)) = S N
N:nat
HrecN:Nat.div2 (S (2 * N)) = N

Nat.div2 (S (S (S (2 * N)))) = S N
N:nat
HrecN:Nat.div2 (S (2 * N)) = N
S (S (2 * N)) = (2 * S N)%nat
N:nat
HrecN:Nat.div2 (S (2 * N)) = N

S (S (2 * N)) = (2 * S N)%nat
ring. Qed.

forall N : nat, (1 < N)%nat -> (0 < Nat.div2 N)%nat

forall N : nat, (1 < N)%nat -> (0 < Nat.div2 N)%nat
H:(1 < 0)%nat

(0 < Nat.div2 0)%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
(0 < Nat.div2 (S N))%nat
H:(1 < 0)%nat

(0 < Nat.div2 0)%nat
elim (lt_n_O _ H).
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat

(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat

(1 < N)%nat \/ N = 1%nat -> (0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
(1 < N)%nat \/ N = 1%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat

(1 < N)%nat \/ N = 1%nat -> (0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat

(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:N = 1%nat
(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat

(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat
Heq:even N

(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat
Heq:odd N
(0 < Nat.div2 (S N))%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat
Heq:even N

(0 < Nat.div2 (S N))%nat
rewrite <- (even_div2 _ Heq); apply HrecN; assumption.
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:(1 < N)%nat
Heq:odd N

(0 < Nat.div2 (S N))%nat
rewrite <- (odd_div2 _ Heq); apply lt_O_Sn.
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H0:(1 < N)%nat \/ N = 1%nat
H1:N = 1%nat

(0 < Nat.div2 (S N))%nat
rewrite H1; simpl; apply lt_O_Sn.
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat

(1 < N)%nat \/ N = 1%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
H1:1%nat = N

(1 < 1)%nat \/ 1%nat = 1%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
m:nat
H1:(2 <= N)%nat
H0:m = N
(1 < N)%nat \/ N = 1%nat
N:nat
H:(1 < S N)%nat
HrecN:(1 < N)%nat -> (0 < Nat.div2 N)%nat
m:nat
H1:(2 <= N)%nat
H0:m = N

(1 < N)%nat \/ N = 1%nat
left; apply lt_le_trans with 2%nat; [ apply lt_n_Sn | apply H1 ]. Qed.

forall (x y : R) (N : nat), (0 < N)%nat -> Rabs (Reste_E x y N) <= maj_Reste_E x y N

forall (x y : R) (N : nat), (0 < N)%nat -> Rabs (Reste_E x y N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Rabs (Reste_E x y N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Rabs (Reste_E x y N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Rabs (sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Rabs (sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)) <= sum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - k)))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

Rabs (sum_f_R0 (fun l : nat => / INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l))) (Init.Nat.pred (N - n))) <= sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + k))) * x ^ S (l + k) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

sum_f_R0 (fun l : nat => Rabs (/ INR (fact (S (l + n))) * x ^ S (l + n) * (/ INR (fact (N - l)) * y ^ (N - l)))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs (/ INR (fact (S (n0 + n))) * x ^ S (n0 + n) * (/ INR (fact (N - n0)) * y ^ (N - n0))) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs (/ INR (fact (S (n0 + n)))) * Rabs (x ^ S (n0 + n)) * (Rabs (/ INR (fact (N - n0))) * Rabs (y ^ (N - n0))) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs (/ INR (fact (S (n0 + n)))) * Rabs x ^ S (n0 + n) * (Rabs (/ INR (fact (N - n0))) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * (Rabs (/ INR (fact (N - n0))) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * (/ INR (fact (N - n0)) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (N - n0)) * / INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (N - n0)) * / INR (fact (S (n0 + n))) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= / INR (fact (N - n0)) * (M ^ (2 * N) * / INR (fact (S n0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (N - n0)) * (/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0))) <= / INR (fact (N - n0)) * (M ^ (2 * N) * / INR (fact (S n0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) * (Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)) <= / INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= Rabs x ^ S (n0 + n)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs y ^ (N - n0) * / INR (fact (S (n0 + n))) <= / INR (fact (S n0)) * Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs y ^ (N - n0) * / INR (fact (S (n0 + n))) <= / INR (fact (S n0)) * Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) <= / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) <= / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 < INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
INR (fact (S n0)) <= INR (fact (S (n0 + n)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

INR (fact (S n0)) <= INR (fact (S (n0 + n)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n0 <= n0 + n)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S n0)) * Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N) * / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= / INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs x ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ S (n0 + n) * Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs y ^ (N - n0) * Rabs x ^ S (n0 + n) <= Rabs y ^ (N - n0) * M ^ S (n0 + n)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= Rabs y ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs x ^ S (n0 + n) <= M ^ S (n0 + n)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs x ^ S (n0 + n) <= M ^ S (n0 + n)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= Rabs x
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs x <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs x <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs x <= Rmax (Rabs x) (Rabs y)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rmax (Rabs x) (Rabs y) <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rmax (Rabs x) (Rabs y) <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ S (n0 + n) * Rabs y ^ (N - n0) <= M ^ S (n0 + n) * M ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= M ^ S (n0 + n)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs y ^ (N - n0) <= M ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
1 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs y ^ (N - n0) <= M ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

1 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs y ^ (N - n0) <= M ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs y ^ (N - n0) <= M ^ (N - n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= Rabs y
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rabs y <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs y <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rabs y <= Rmax (Rabs x) (Rabs y)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
Rmax (Rabs x) (Rabs y) <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

Rmax (Rabs x) (Rabs y) <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ S (n0 + n) * M ^ (N - n0) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ (N + S n) <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

1 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n <= 2 * N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N + S n <= 2 * N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N + S n <= N + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(S n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(S n <= S (Init.Nat.pred N))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
S (Init.Nat.pred N) = N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

S (Init.Nat.pred N) = N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N + S n)%nat = (S (n0 + n) + (N - n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

INR N + (INR n + 1) = INR n0 + INR n + 1 + (INR N - INR n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n0 <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n0 <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n0 <= Init.Nat.pred (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(S (Init.Nat.pred (N - n)) <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N - n <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N - n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n + (N - n) <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(0 < N - n)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n + 0 < n + (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n + 0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (N - n0)) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S (n0 + n))) >= 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun i : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - i)) * M ^ (2 * N)) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n)) * M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= M ^ (2 * N) * sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

sum_f_R0 (fun l : nat => M ^ (2 * N) * / INR (fact (S l)) * / INR (fact (N - l))) (Init.Nat.pred (N - n)) <= sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))² * M ^ (2 * N)) (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))² * M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

M ^ (2 * N) * / INR (fact (S n0)) * / INR (fact (N - n0)) <= M ^ (2 * N) * / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= M ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

0 <= 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
1 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

1 <= M
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact (N - n0)) * / INR (fact (S n0)) <= / INR (fact (N - n0)) * / INR (fact n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

0 <= / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact (S n0)) <= / INR (fact n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact (S n0)) <= / INR (fact n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

0 < INR (fact n0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact n0) <= INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact n0) <= INR (fact (S n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(fact n0 <= fact (S n0))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n0 <= S n0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact n0) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C N n0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C (2 * N0) n0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C (2 * N0) n0 / INR (fact N) <= C N N0 / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N) * C (2 * N0) n0 <= / INR (fact N) * C N N0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

0 <= / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C (2 * N0) n0 <= C N N0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C (2 * N0) n0 <= C N N0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C (2 * N0) n0 <= C (2 * N0) N0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n0 <= 2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n0 <= Init.Nat.pred (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(S (Init.Nat.pred (N - n)) <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N - n <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N - n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n + (N - n) <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(0 < N - n)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n + 0 < n + (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n + 0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C N N0 / INR (fact N) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact N0))² <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
/ (INR (fact N0))² = C N N0 / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact N0))² = C N N0 / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact N0) * INR (fact N0)) = INR (fact N) * / (INR (fact N0) * INR (fact (N - N0))) * / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N0) * / INR (fact N0) = INR (fact N) * (/ INR (fact N0) * / INR (fact (N - N0))) * / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * / INR (fact (N - N0)) * INR (fact N) * / INR (fact N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * (/ INR (fact (N - N0)) * (INR (fact N) * / INR (fact N)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * (/ INR (fact (N - N0)) * 1)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact N0) * / INR (fact N0) = / INR (fact N0) * / INR (fact N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
N0 = (N - N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

N0 = (N - N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

N0 = (N0 + N0 - N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
(N0 + N0)%nat = N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N0 + N0)%nat = N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

(N0 + N0)%nat = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact (N - N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

C N n0 / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N) * / (INR (fact n0) * INR (fact (N - n0))) * / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact n0) * INR (fact (N - n0))) * INR (fact N) * / INR (fact N) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact n0) * INR (fact (N - n0))) * (INR (fact N) * / INR (fact N)) = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ (INR (fact n0) * INR (fact (N - n0))) * 1 = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

/ INR (fact n0) * / INR (fact (N - n0)) * 1 = / INR (fact n0) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact n0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact n0) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact (N - n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact (N - n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat
INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = (2 * N0)%nat

INR (fact N) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

/ INR (fact (S n0)) * / INR (fact (N - n0)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

C (S N) (S n0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

C (S N) (S n0) / INR (fact (S N)) <= C (S N) (S N0) / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

/ INR (fact (S N)) * C (S N) (S n0) <= / INR (fact (S N)) * C (S N) (S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

0 <= / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) <= C (S N) (S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

C (S N) (S n0) <= C (S N) (S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

S N = (2 * S N0)%nat -> C (S N) (S n0) <= C (S N) (S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(S n0 <= 2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n0 <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n0 <= Init.Nat.pred (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(Init.Nat.pred (N - n) <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(S (Init.Nat.pred (N - n)) <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(N - n <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(N - n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n + (N - n) <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(N <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(N <= S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(0 < N - n)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n + 0 < n + (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n + 0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

S N = (2 * S N0)%nat -> C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

C (S N) (S N0) / INR (fact (S N)) <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ (INR (fact (S N0)))² <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ (INR (fact (S N0)))² <= / (INR (fact (S N0)))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ (INR (fact (S N0)))² = C (S N) (S N0) / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ (INR (fact (S N0)) * INR (fact (S N0))) = INR (fact (S N)) * / (INR (fact (S N0)) * INR (fact (S N - S N0))) * / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ INR (fact (S N0)) * / INR (fact (S N0)) = INR (fact (S N)) * (/ INR (fact (S N0)) * / INR (fact (S N - S N0))) * / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ INR (fact (S N0)) * / INR (fact (S N0)) = INR (fact (S N)) * (/ INR (fact (S N0)) * / INR (fact (S N0))) * / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * / INR (fact (S N0)) * INR (fact (S N)) * / INR (fact (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * (/ INR (fact (S N0)) * (INR (fact (S N)) * / INR (fact (S N))))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

/ INR (fact (S N0)) * / INR (fact (S N0)) = / INR (fact (S N0)) * (/ INR (fact (S N0)) * 1)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

S N0 = (S N - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

S N0 = (S N0 + S N0 - S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
(S N0 + S N0)%nat = S N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

(S N0 + S N0)%nat = S N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

INR (fact (S N - S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat
INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
H5:S N = (2 * S N0)%nat

INR (fact (S N0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

S N = (2 * S N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

C (S N) (S n0) / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

INR (fact (S N)) * / (INR (fact (S n0)) * INR (fact (S N - S n0))) * / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

/ (INR (fact (S n0)) * INR (fact (S N - S n0))) * INR (fact (S N)) * / INR (fact (S N)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

/ (INR (fact (S n0)) * INR (fact (S N - S n0))) * 1 = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

/ INR (fact (S n0)) * / INR (fact (S N - S n0)) = / INR (fact (S n0)) * / INR (fact (N - n0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N - S n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

INR (fact (S n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N - S n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

INR (fact (S N - S n0)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)
INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
n0:nat
H1:(n0 <= Init.Nat.pred (N - n))%nat
H2:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H3:N = (2 * N0)%nat \/ N = S (2 * N0)
H4:N = S (2 * N0)

INR (fact (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= maj_Reste_E x y N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) / (INR (fact (Nat.div2 (Init.Nat.pred N))))²)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) * / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

M ^ (2 * N) * sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N) * (/ (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

0 <= 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - k))) (Init.Nat.pred N) <= sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

sum_f_R0 (fun _ : nat => / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred (N - n)) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

/ (INR (fact (Nat.div2 (S N))))² * INR (S (Init.Nat.pred (N - n))) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

/ (INR (fact (Nat.div2 (S N))))² * INR (N - n) <= INR (N - n) * / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(N - n)%nat = S (Init.Nat.pred (N - n))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(0 < N - n)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n + 0 < n + (N - n))%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n + 0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(Init.Nat.pred N < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(0 < N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun k : nat => INR (N - k) * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

INR (N - n) * / (INR (fact (Nat.div2 (S N))))² <= INR N * / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

/ (INR (fact (Nat.div2 (S N))))² * INR (N - n) <= / (INR (fact (Nat.div2 (S N))))² * INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

0 <= / (INR (fact (Nat.div2 (S N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
INR (N - n) <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

INR (fact (Nat.div2 (S N))) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
INR (N - n) <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

INR (N - n) <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(N - n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n + (N - n) <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(N <= n + N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(n <= Init.Nat.pred N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat
(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
n:nat
H0:(n <= Init.Nat.pred N)%nat

(Init.Nat.pred N <= N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

sum_f_R0 (fun _ : nat => INR N * / (INR (fact (Nat.div2 (S N))))²) (Init.Nat.pred N) <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

INR N * / (INR (fact (Nat.div2 (S N))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N)) -> INR N * / (INR (fact (Nat.div2 (S N))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

INR N * / (INR (fact (S (Nat.div2 (Init.Nat.pred N)))))² * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

INR N * / ((INR (fact (Nat.div2 (Init.Nat.pred N))))² * (INR (S (Nat.div2 (Init.Nat.pred N))))²) * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

INR N * (/ (INR (fact (Nat.div2 (Init.Nat.pred N))))² * / (INR (S (Nat.div2 (Init.Nat.pred N))))²) * INR N <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

0 <= / (INR (fact (Nat.div2 (Init.Nat.pred N))))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
/ (INR (S (Nat.div2 (Init.Nat.pred N))))² * (INR N * INR N) <= 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

/ (INR (S (Nat.div2 (Init.Nat.pred N))))² * (INR N * INR N) <= 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

/ (INR (Nat.div2 (S N)))² * (INR N * INR N) <= 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

INR N <= INR (2 * Nat.div2 (S N)) -> / (INR (Nat.div2 (S N)))² * (INR N * INR N) <= 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

0 < (INR (Nat.div2 (S N)))²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR (Nat.div2 (S N)) <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat

False
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat

(1 < S N)%nat -> False
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat
(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat
H3:(1 < S N)%nat
H4:(0 < Nat.div2 (S N))%nat

False
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat
(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
H2:Nat.div2 (S N) = 0%nat

(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(INR (Nat.div2 (S N)))² * (/ (INR (Nat.div2 (S N)))² * (INR N * INR N)) <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(INR (Nat.div2 (S N)))² * / (INR (Nat.div2 (S N)))² * INR N * INR N <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

1 * INR N * INR N <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR N * INR N <= (INR (Nat.div2 (S N)))² * 4
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR N * INR N <= (INR (Nat.div2 (S N)))² * 2²
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR N * INR N <= (INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR N <= INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 <= INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

INR N <= INR (Nat.div2 (S N)) * INR 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 <= INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

0 <= INR N
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 <= INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

0 <= INR (Nat.div2 (S N)) * 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

0 < INR (Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 < 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
0 < 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

0 < 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(1 < S N)%nat -> (INR (Nat.div2 (S N)))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))
(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:INR N <= INR (2 * Nat.div2 (S N))

(1 < S N)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)

INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)

INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = (2 * N0)%nat

INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = (2 * N0)%nat

INR N <= INR (2 * Nat.div2 (S (2 * N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = (2 * N0)%nat

INR N <= INR (2 * N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR N <= INR (2 * Nat.div2 (S N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR N <= INR (2 * Nat.div2 (S (S (2 * N0))))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR N <= INR (2 * Nat.div2 (2 * S N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR N <= INR (2 * S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR (S (2 * N0)) <= INR (2 * S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR 2 * INR N0 + 1 <= INR 2 * INR (S N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR 2 * INR N0 + 1 <= INR 2 * (INR N0 + 1)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

INR 2 * INR N0 + 1 <= INR 2 * INR N0 + INR 2 * 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

1 <= INR 2 * 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

1 <= INR 2
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

1 <= 1 + 1
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
H1:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H2:N = (2 * N0)%nat \/ N = S (2 * N0)
H3:N = S (2 * N0)

(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

(INR (fact (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))

(INR (S (Nat.div2 (Init.Nat.pred N))))² <> 0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat

(0 < N0)%nat -> Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

Nat.div2 (S (2 * N0)) = S (Nat.div2 (Init.Nat.pred (2 * N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

N0 = S (Nat.div2 (Init.Nat.pred (2 * N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

N0 = S (Nat.div2 (Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (S (2 * Init.Nat.pred N0)) = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

N0 = S (Nat.div2 (S (2 * Init.Nat.pred N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (S (2 * Init.Nat.pred N0)) = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

N0 = S (Init.Nat.pred N0)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (S (2 * Init.Nat.pred N0)) = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

S (2 * Init.Nat.pred N0) = Init.Nat.pred (S (S (2 * Init.Nat.pred N0)))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat
S (S (2 * Init.Nat.pred N0)) = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
H3:(0 < N0)%nat

S (S (2 * Init.Nat.pred N0)) = (2 * N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat
(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = (2 * N0)%nat

(0 < N0)%nat
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

Nat.div2 (S N) = S (Nat.div2 (Init.Nat.pred N))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

Nat.div2 (S (S (2 * N0))) = S (Nat.div2 (Init.Nat.pred (S (2 * N0))))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

Nat.div2 (S (S (2 * N0))) = S (Nat.div2 (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

Nat.div2 (2 * S N0) = S (Nat.div2 (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

S N0 = S N0
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)
(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
H0:exists p : nat, N = (2 * p)%nat \/ N = S (2 * p)
N0:nat
H1:N = (2 * N0)%nat \/ N = S (2 * N0)
H2:N = S (2 * N0)

(2 * S N0)%nat = S (S (2 * N0))
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R
N = S (Init.Nat.pred N)
x, y:R
N:nat
H:(0 < N)%nat
M:=Rmax 1 (Rmax (Rabs x) (Rabs y)):R

N = S (Init.Nat.pred N)
apply S_pred with 0%nat; apply H. Qed.

forall x y : R, Un_cv (maj_Reste_E x y) 0

forall x y : R, Un_cv (maj_Reste_E x y) 0
x, y:R
H:Un_cv (Majxy x y) 0

Un_cv (maj_Reste_E x y) 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0
eps:R
H0:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Majxy x y n) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n : nat, (n >= N0)%nat -> R_dist (Majxy x y n) 0 < eps / 4

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Majxy x y n0) 0 < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

R_dist (maj_Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rabs (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²)) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 4
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))² <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))² <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * (/ INR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n)))) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

/ INR (fact (Nat.div2 (Init.Nat.pred n))) * Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

/ INR (fact (Nat.div2 (Init.Nat.pred n))) <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 < INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n))) <= INR (fact (Nat.div2 (Init.Nat.pred n))) * 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

INR (fact (Nat.div2 (Init.Nat.pred n))) * / INR (fact (Nat.div2 (Init.Nat.pred n))) <= INR (fact (Nat.div2 (Init.Nat.pred n))) * 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 <= INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(1 <= fact (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(0 < fact (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

INR 0 < INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(0 < N1)%nat -> (2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat

(2 * (2 * N1) <= 4 * S (Nat.div2 (Init.Nat.pred (2 * N1))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat

(2 * (2 * N1) <= 4 * S (Nat.div2 (S (2 * Init.Nat.pred N1))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat

(2 * (2 * N1) <= 4 * S (Init.Nat.pred N1))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < N1)%nat

S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(0 < n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(0 < 2)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(2 <= Nat.max (2 * S N0) 2)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat

(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = (2 * N1)%nat
H7:(0 < n)%nat

(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * n <= 4 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * S (2 * N1) <= 4 * S (Nat.div2 (Init.Nat.pred (S (2 * N1)))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * S (2 * N1) <= 4 * S (Nat.div2 (2 * N1)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * S (2 * N1) <= 4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * S (2 * N1) <= 2 * (2 * S N1))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * (2 * S N1))%nat = (4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(S (2 * N1) <= 2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * (2 * S N1))%nat = (4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(S (2 * N1) <= S (S (2 * N1)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
S (S (2 * N1)) = (2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * (2 * S N1))%nat = (4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

S (S (2 * N1)) = (2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * (2 * S N1))%nat = (4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * (2 * S N1))%nat = (4 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H5:n = (2 * N1)%nat \/ n = S (2 * N1)
H6:n = S (2 * N1)

(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

INR (fact (Nat.div2 (Init.Nat.pred n))) <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 < / 4
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
/ 4 * (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))) < / 4 * eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

/ 4 * (4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))))) < / 4 * eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))) < / 4 * eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) < eps * / 4
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) < eps * / 4
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(N0 <= Nat.div2 (Init.Nat.pred n))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(2 * S N0 <= n)%nat -> (N0 <= Nat.div2 (Init.Nat.pred n))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

(S N0 <= S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

0 < INR 2
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
INR 2 * INR (S N0) <= INR 2 * INR (S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

INR 2 * INR (S N0) <= INR 2 * INR (S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

(2 * S N0 <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(0 < N1)%nat -> (n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(2 * N1 <= 2 * S (Nat.div2 (Init.Nat.pred (2 * N1))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(N1 <= S (Nat.div2 (Init.Nat.pred (2 * N1))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(N1 <= S (Nat.div2 (S (2 * Init.Nat.pred N1))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(N1 <= S (Init.Nat.pred N1))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

(N1 <= N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
N1 = S (Init.Nat.pred N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

N1 = S (Init.Nat.pred N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

S (2 * Init.Nat.pred N1) = Init.Nat.pred (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

S (2 * Init.Nat.pred N1) = Init.Nat.pred (S (S (2 * Init.Nat.pred N1)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (S (2 * Init.Nat.pred N1)) = (2 * N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

S (S (2 * Init.Nat.pred N1)) = (2 * N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

S (S (2 * Init.Nat.pred N1)) = (2 * S (Init.Nat.pred N1))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat
S (Init.Nat.pred N1) = N1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
H8:(0 < N1)%nat

S (Init.Nat.pred N1) = N1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(0 < N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

INR 0 < INR N1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

0 < INR 2
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
INR 2 * INR 0 < INR 2 * INR N1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

INR 2 * INR 0 < INR 2 * INR N1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

0 < INR (2 * N1)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(0 < 2 * N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(0 < n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(0 < 2)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(2 <= Nat.max (2 * S N0) 2)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat
(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = (2 * N1)%nat

(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(n <= 2 * S (Nat.div2 (Init.Nat.pred n)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(S (2 * N1) <= 2 * S (Nat.div2 (Init.Nat.pred (S (2 * N1)))))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(S (2 * N1) <= 2 * S (Nat.div2 (2 * N1)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(S (2 * N1) <= 2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(S (2 * N1) <= S (S (2 * N1)))%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
S (S (2 * N1)) = (2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

S (S (2 * N1)) = (2 * S N1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)
(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
H4:(2 * S N0 <= n)%nat
H5:exists p : nat, n = (2 * p)%nat \/ n = S (2 * p)
N1:nat
H6:n = (2 * N1)%nat \/ n = S (2 * N1)
H7:n = S (2 * N1)

(2 * N1)%nat = Init.Nat.pred (S (2 * N1))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(2 * S N0 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(2 * S N0 <= Nat.max (2 * S N0) 2)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

(Nat.max (2 * S N0) 2 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) - 0) = Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n))) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n))) / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= / INR (fact (Nat.div2 (Init.Nat.pred n)))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

4 <> 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²) >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 4 * (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) / (INR (fact (Nat.div2 (Init.Nat.pred n))))²)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 4
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n) * / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (2 * n)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= 1
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

1 <= Rmax 1 (Rmax (Rabs x) (Rabs y))
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat
0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Majxy x y n0) 0 < eps0
eps:R
H0:eps > 0
H1:0 < eps / 4
N0:nat
H2:forall n0 : nat, (n0 >= N0)%nat -> Rabs (Rmax 1 (Rmax (Rabs x) (Rabs y)) ^ (4 * S n0) / INR (fact n0) - 0) < eps / 4
n:nat
H3:(n >= Nat.max (2 * S N0) 2)%nat

0 <= / (INR (fact (Nat.div2 (Init.Nat.pred n))))²
left; apply Rinv_0_lt_compat; apply Rsqr_pos_lt; apply INR_fact_neq_0. Qed. (**********)

forall x y : R, Un_cv (Reste_E x y) 0

forall x y : R, Un_cv (Reste_E x y) 0
x, y:R
H:Un_cv (maj_Reste_E x y) 0

Un_cv (Reste_E x y) 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (maj_Reste_E x y n) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n : nat, (n >= x0)%nat -> R_dist (maj_Reste_E x y n) 0 < eps

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

R_dist (Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

Rabs (Reste_E x y n) < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

Rabs (Reste_E x y n) <= maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(0 < n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(0 < 1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
(1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(1 <= Nat.max x0 1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
(Nat.max x0 1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(Nat.max x0 1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

maj_Reste_E x y n < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

R_dist (maj_Reste_E x y n) 0 < eps
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
R_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(n >= x0)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
R_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(x0 <= Nat.max x0 1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
(Nat.max x0 1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
R_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(Nat.max x0 1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
R_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

R_dist (maj_Reste_E x y n) 0 = maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

maj_Reste_E x y n >= 0
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

0 <= Rabs (Reste_E x y n)
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
Rabs (Reste_E x y n) <= maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

Rabs (Reste_E x y n) <= maj_Reste_E x y n
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(0 < n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(0 < 1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
(1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(1 <= Nat.max x0 1)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat
(Nat.max x0 1 <= n)%nat
x, y:R
H:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps0
eps:R
H0:eps > 0
x0:nat
H1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (maj_Reste_E x y n0) 0 < eps
n:nat
H2:(n >= Nat.max x0 1)%nat

(Nat.max x0 1 <= n)%nat
apply H2. Qed. (**********)

forall x y : R, exp (x + y) = exp x * exp y

forall x y : R, exp (x + y) = exp x * exp y
x, y:R
H0:Un_cv (E1 x) (exp x)

exp (x + y) = exp x * exp y
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)

exp (x + y) = exp x * exp y
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))

exp (x + y) = exp x * exp y
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))

Un_cv ?Un (exp (x + y))
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
Un_cv ?Un (exp x * exp y)
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))

Un_cv (E1 (x + y)) (exp x * exp y)
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)

Un_cv (E1 (x + y)) (exp x * exp y)
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:Un_cv (fun i : nat => (fun i0 : nat => E1 x i0 * E1 y i0) i - Reste_E x y i) (exp x * exp y - 0)

Un_cv (E1 (x + y)) (exp x * exp y)
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 (x + y) n) (exp x * exp y) < eps
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n : nat, (n >= x0)%nat -> R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y - 0) < eps

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (E1 (x + y) n) (exp x * exp y) < eps
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat

R_dist (E1 (x + y) n) (exp x * exp y) < eps
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat

R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y) < eps
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < eps
n:nat
H6:(n >= S x0)%nat

R_dist (E1 x n * E1 y n - Reste_E x y n) (exp x * exp y) < eps
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < eps
n:nat
H6:(n >= S x0)%nat

(n >= x0)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < eps
n:nat
H6:(n >= S x0)%nat

(x0 <= S x0)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < eps
n:nat
H6:(n >= S x0)%nat
(S x0 <= n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y) < eps
n:nat
H6:(n >= S x0)%nat

(S x0 <= n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat

(0 < n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat

(0 < S x0)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat
(S x0 <= n)%nat
x, y:R
H0:Un_cv (E1 x) (exp x)
H:Un_cv (E1 y) (exp y)
H1:Un_cv (E1 (x + y)) (exp (x + y))
H2:Un_cv (fun i : nat => E1 x i * E1 y i) (exp x * exp y)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps0
eps:R
H4:eps > 0
x0:nat
H5:forall n0 : nat, (n0 >= x0)%nat -> R_dist (E1 x n0 * E1 y n0 - Reste_E x y n0) (exp x * exp y - 0) < eps
n:nat
H6:(n >= S x0)%nat

(S x0 <= n)%nat
apply H6. Qed. (**********)

forall x : R, 0 < x -> 0 < exp x

forall x : R, 0 < x -> 0 < exp x
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R

0 < exp x
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R

Un_cv (fun n : nat => sum_f_R0 An n) (exp x) -> 0 < exp x
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)

0 < sum_f_R0 An 0
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
sum_f_R0 An 0 <= exp x
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)

sum_f_R0 An 0 <= exp x
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)

Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
forall n : nat, 0 <= An n
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n : nat => sum_f_R0 An n) (exp x)

forall n : nat, 0 <= An n
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)
n:nat

0 < / INR (fact n)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)
n:nat
0 < x ^ n
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
H0:Un_cv (fun n0 : nat => sum_f_R0 An n0) (exp x)
n:nat

0 < x ^ n
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R

Un_cv (fun n : nat => sum_f_R0 An n) (exp x)
x:R
H:0 < x
An:=fun N : nat => / INR (fact N) * x ^ N:nat -> R
x0:R

forall e : exp_in x x0, Un_cv (fun n : nat => sum_f_R0 An n) (proj1_sig (exist (fun l : R => exp_in x l) x0 e))
unfold exp_in; unfold infinite_sum, Un_cv; trivial. Qed. (**********)

forall x : R, 0 < exp x

forall x : R, 0 < exp x
x:R
Hlt:0 < x

0 < exp x

0 < exp 0
x:R
Hgt:0 > x
0 < exp x

0 < exp 0
x:R
Hgt:0 > x
0 < exp x
x:R
Hgt:0 > x

0 < exp x
x:R
Hgt:0 > x

0 < 1 / exp (- x)
x:R
Hgt:0 > x
1 / exp (- x) = exp x
x:R
Hgt:0 > x

0 < 1
x:R
Hgt:0 > x
0 < / exp (- x)
x:R
Hgt:0 > x
1 / exp (- x) = exp x
x:R
Hgt:0 > x

0 < / exp (- x)
x:R
Hgt:0 > x
1 / exp (- x) = exp x
x:R
Hgt:0 > x

0 < - x
x:R
Hgt:0 > x
1 / exp (- x) = exp x
x:R
Hgt:0 > x

1 / exp (- x) = exp x
x:R
Hgt:0 > x

exp (- x) <> 0 -> 1 / exp (- x) = exp x
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0

exp (- x) * (1 * / exp (- x)) = exp (- x) * exp x
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0

1 = exp (- x) * exp x
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0

1 = exp (- x + x)
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0

exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0
exp (- x) <> 0
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (- x) <> 0

exp (- x) <> 0
x:R
Hgt:0 > x
exp (- x) <> 0
x:R
Hgt:0 > x

exp (- x) <> 0
x:R
Hgt:0 > x
H:exp (x + - x) = exp x * exp (- x)

exp (- x) <> 0
x:R
Hgt:0 > x
H:1 = exp x * exp (- x)

exp (- x) <> 0
x:R
Hgt:0 > x
H:1 = exp x * 0
H0:exp (- x) = 0

False
x:R
Hgt:0 > x
H:1 = 0
H0:exp (- x) = 0

False
elim R1_neq_R0; assumption. Qed. (* ((exp h)-1)/h -> 0 quand h->0 *)

derivable_pt_lim exp 0 1

derivable_pt_lim exp 0 1
eps:R
H:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R

CVN_R fn -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn

(forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}

(forall n : nat, continuity (fn n)) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)

continuity (SFL fn cv) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:continuity_pt (SFL fn cv) 0

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs ((exp (0 + h) - exp 0) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs ((exp h - 1) / h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs (SFL fn cv h - 1) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs (SFL fn cv h - SFL fn cv 0) < eps
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

D_x no_cond 0 h /\ Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

D_x no_cond 0 h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

True
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
0 <> h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

0 <> h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

Rabs (h - 0) < alp
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

SFL fn cv 0 = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

(let (a, _) := cv 0 in a) = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n : nat, continuity (fn n)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x

x = 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n : nat, continuity (fn n)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x

Un_cv ?Un x
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n : nat, continuity (fn n)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
Un_cv ?Un 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n : nat, continuity (fn n)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x

Un_cv (fun N : nat => SP fn N 0) 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n : nat, continuity (fn n)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x

forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => fn k 0) n) 1 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

R_dist (sum_f_R0 (fun k : nat => fn k 0) n) 1 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

Rabs (fn 0%nat 0 + sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) - 1) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

Rabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) + fn 0%nat 0 - 1) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

Rabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n) + 1 - 1) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

Rabs (sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

Rabs 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
0 = sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

0 = sum_f_R0 (fun i : nat => fn (S i) 0) (Init.Nat.pred n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n1 : nat, continuity (fn n1)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
n0:nat
H10:(n0 <= Init.Nat.pred n)%nat

fn (S n0) 0 = 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n1 : nat, continuity (fn n1)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
n0:nat
H10:(n0 <= Init.Nat.pred n)%nat

0 ^ S n0 / INR (fact (S (S n0))) = 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n1 : nat, continuity (fn n1)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
n0:nat
H10:(n0 <= Init.Nat.pred n)%nat

0 * 0 ^ n0 / INR (fact n0 + n0 * fact n0 + (fact n0 + n0 * fact n0 + n0 * (fact n0 + n0 * fact n0))) = 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

1 = fn 0%nat 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

1 = 1 / 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat
(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x0 : R, continuity_pt (SFL fn cv) x0
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp0 -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x0 : R, D_x no_cond 0 x0 /\ Rabs (x0 - 0) < alp -> Rabs (SFL fn cv x0 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x:R
Hu:Un_cv (fun N : nat => SP fn N 0) x
eps0:R
H8:eps0 > 0
n:nat
H9:(n >= 1)%nat

(0 < n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

SFL fn cv h = (exp h - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
H1:forall x : R, continuity_pt (SFL fn cv) x
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp0 -> Rabs (SFL fn cv x - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x : R, D_x no_cond 0 x /\ Rabs (x - 0) < alp -> Rabs (SFL fn cv x - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}

(let (a, _) := cv h in a) = (proj1_sig (exist_exp h) - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:exp_in h x

x0 = (x - 1) / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:exp_in h x

Un_cv ?Un x0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:exp_in h x
Un_cv ?Un ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps0 : R, eps0 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps0)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:exp_in h x

Un_cv (fun N : nat => SP fn N h) ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:exp_in h x
eps0:R
H8:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0

0 < eps0 * Rabs h -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps0 * Rabs h

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n h) ((x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

R_dist (SP fn n h) ((x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (SP fn n h - (x - 1) / h) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

0 < Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
Rabs h * Rabs (SP fn n h - (x - 1) / h) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs h * Rabs (SP fn n h - (x - 1) / h) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (h * (SP fn n h - (x - 1) / h)) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (h * SP fn n h - h * ((x - 1) / h)) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (h * SP fn n h - (x - 1)) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (h * SP fn n h - (x - 1)) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x) < Rabs h * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x) < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

(N0 <= S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

(N0 <= S N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(S N0 <= S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

(S N0 <= S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) (S n) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

/ INR (fact 0) * h ^ 0 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) - x = h * SP fn n h - (x - 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + - (x + - (1))
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + (- x + - - (1))
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) + - x = h * SP fn n h + (- x + 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

- x + (1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n))) = h * SP fn n h + (- x + 1)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

- x + (1 + sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n))) = - x + 1 + h * SP fn n h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) (Init.Nat.pred (S n)) = h * SP fn n h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = h * SP fn n h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = h * sum_f_R0 (fun k : nat => fn k h) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

sum_f_R0 (fun i : nat => / INR (fact (S i)) * h ^ S i) n = sum_f_R0 (fun i : nat => fn i h * h) n
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
i:nat
H12:(i <= n)%nat

/ INR (fact (S i)) * h ^ S i = fn i h * h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
i:nat
H12:(i <= n)%nat

/ INR (fact (S i)) * h ^ S i = h ^ i / INR (fact (S i)) * h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
i:nat
H12:(i <= n)%nat

/ INR (fact (S i)) * (h * h ^ i) = h ^ i / INR (fact (S i)) * h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
i:nat
H12:(i <= n)%nat
h * h ^ i = h ^ S i
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i0 : nat => / INR (fact i0) * h ^ i0) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
i:nat
H12:(i <= n)%nat

h * h ^ i = h ^ S i
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

1 = / INR (fact 0) * h ^ 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0 - x) < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

(0 < S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat
x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

x - 1 = h * ((x - 1) / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

x - 1 = h * ((x - 1) * / h)
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

x - 1 = h * (x - 1) * / h
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n0 : nat, continuity (fn n0)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps1
eps0:R
H8:eps0 > 0
H9:0 < eps0 * Rabs h
N0:nat
H10:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n0) x < eps0 * Rabs h
n:nat
H11:(n >= N0)%nat

h <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0

0 < eps0 * Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0

0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0
0 < Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x1 : R) => x1 ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x1 : R, {l : R | Un_cv (fun N : nat => SP fn N x1) l}
H0:forall n : nat, continuity (fn n)
H1:forall x1 : R, continuity_pt (SFL fn cv) x1
H2:forall eps1 : R, eps1 > 0 -> exists alp0 : R, alp0 > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp0 -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps1)
alp:R
H3:alp > 0 /\ (forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps)
H4:alp > 0
H5:forall x1 : R, D_x no_cond 0 x1 /\ Rabs (x1 - 0) < alp -> Rabs (SFL fn cv x1 - SFL fn cv 0) < eps
h:R
H6:h <> 0
H7:Rabs h < {| pos := alp; cond_pos := H4 |}
x0:R
Hu:Un_cv (fun N : nat => SP fn N h) x0
x:R
Hexp:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => / INR (fact i) * h ^ i) n) x < eps1
eps0:R
H8:eps0 > 0

0 < Rabs h
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)
continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
H0:forall n : nat, continuity (fn n)

continuity (SFL fn cv)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}

forall n : nat, continuity (fn n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat

continuity (fun x : R => x ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat

continuity (pow_fct n / fct_cte (INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat

continuity (pow_fct n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat
continuity (fct_cte (INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat
forall x : R, fct_cte (INR (fact (S n))) x <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat

continuity (fct_cte (INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat
forall x : R, fct_cte (INR (fact (S n))) x <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
n:nat

forall x : R, fct_cte (INR (fact (S n))) x <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn
forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
X:CVN_R fn

forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R

CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0

CVN_R fn
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0

forall r : posreal, CVN_r fn r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l} -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x
forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
x:R
p:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) x

forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= r ^ n / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs (y - 0) < r

Rabs (fn n y) <= r ^ n / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r

Rabs (fn n y) <= r ^ n / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r

Rabs (y ^ n / INR (fact (S n))) <= r ^ n / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r

Rabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r

0 < INR (fact (S n)) -> Rabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

Rabs (y ^ n) * Rabs (/ INR (fact (S n))) <= r ^ n * / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

Rabs (y ^ n) * / INR (fact (S n)) <= r ^ n * / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

/ INR (fact (S n)) * Rabs (y ^ n) <= / INR (fact (S n)) * r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

0 <= / INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
Rabs (y ^ n) <= r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

Rabs (y ^ n) <= r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

Rabs y ^ n <= r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

Rabs (Rabs y) <= r
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))
/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
H2:0 < INR (fact (S n))

/ INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r
0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x0 : R) => x0 ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
x:R
p:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n0) x
n:nat
y:R
H1:Rabs y < r

0 < INR (fact (S n))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

(r : R) <> 0 -> {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (r ^ k / INR (fact (S k)))) n) l}
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0

forall n : nat, Rabs (r ^ n / INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
H1:(r : R) <> 0
n:nat

r ^ n / INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
H1:(r : R) <> 0
n:nat

r ^ n <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
H1:(r : R) <> 0
n:nat
/ INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n0 : nat => Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0
r:posreal
H1:(r : R) <> 0
n:nat

/ INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0
Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
H1:(r : R) <> 0

Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps0
r:posreal
H1:(r : R) <> 0

Un_cv (fun n : nat => Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n : nat, (n >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0 < eps0 / r

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat

R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat

(S n >= N0)%nat -> R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat

R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:R_dist (Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) 0 < eps0 / r

R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < eps0 / r

R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

R_dist (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) 0 < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs (Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n))))) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs (Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs (r * / INR (fact (S (S n))) * / / INR (fact (S n))) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

0 < / r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ r * (r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < / r * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

/ r * (r * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n)))) < / r * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

1 * Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < / r * eps0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 * / r
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n / INR (fact (S (S n)))) / Rabs (r ^ n / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n * / INR (fact (S (S n)))) * / Rabs (r ^ n * / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * Rabs (/ INR (fact (S (S n)))) * / (Rabs (r ^ n) * Rabs (/ INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * / Rabs (INR (fact (S (S n)))) * / (Rabs (r ^ n) * / Rabs (INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = Rabs (r ^ S n) * / Rabs (INR (fact (S (S n)))) * (/ Rabs (r ^ n) * / / Rabs (INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * / / INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * / / INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * / INR (fact (S (S n))) * INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

/ INR (fact (S (S n))) * r * INR (fact (S n)) = r ^ S n * / INR (fact (S (S n))) * (/ r ^ n * INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

/ INR (fact (S (S n))) * r * INR (fact (S n)) = / INR (fact (S (S n))) * r ^ S n * (/ r ^ n * INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

/ INR (fact (S (S n))) * (r * INR (fact (S n))) = / INR (fact (S (S n))) * (r ^ S n * (/ r ^ n * INR (fact (S n))))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r * INR (fact (S n)) = r ^ S n * (/ r ^ n * INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S n)) * r = r ^ S n * (/ r ^ n * INR (fact (S n)))
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S n)) * r = INR (fact (S n)) * (r ^ S n * / r ^ n)
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r = r ^ S n * / r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r = r * r ^ n * / r ^ n
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r = r * 1
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r ^ n <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S n)) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r ^ n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S (S n))) >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

r ^ S n >= 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

Rabs (r ^ n) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

/ Rabs (INR (fact (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S n)) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r
INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
hyp_sn:(S n >= N0)%nat
H6:Rabs (/ INR (fact (S (S n))) * / / INR (fact (S n))) < eps0 / r

INR (fact (S (S n))) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat

(S n >= N0)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat

(N0 <= n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat
(n <= S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps1
r:posreal
H1:(r : R) <> 0
eps0:R
H2:eps0 > 0
H3:0 < eps0 / r
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (Rabs (/ INR (fact (S n0)) * / / INR (fact n0))) 0 < eps0 / r
n:nat
H5:(n >= N0)%nat

(n <= S n)%nat
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal
(r : R) <> 0
eps:R
H:0 < eps
fn:=fun (N : nat) (x : R) => x ^ N / INR (fact (S N)):nat -> R -> R
H0:Un_cv (fun n : nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0
r:posreal

(r : R) <> 0
assert (H1 := cond_pos r); red; intro; rewrite H2 in H1; elim (Rlt_irrefl _ H1). Qed. (**********)

forall x : R, derivable_pt_lim exp x (exp x)

forall x : R, derivable_pt_lim exp x (exp x)
x:R
H0:derivable_pt_lim exp 0 1

derivable_pt_lim exp x (exp x)
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0
eps:R
H:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h : R, h <> 0 -> Rabs h < del -> Rabs ((exp (0 + h) - exp 0) / h - 1) < eps / exp x

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del

Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp (0 + h) - exp 0) / h - 1) < eps / exp x

Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

Rabs ((exp (x + h) - exp x) / h - exp x) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

Rabs (exp x * ((exp h - 1) / h - 1)) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

exp x * Rabs ((exp h - 1) / h - 1) < eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

0 < / exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
/ exp x * (exp x * Rabs ((exp h - 1) / h - 1)) < / exp x * eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

/ exp x * (exp x * Rabs ((exp h - 1) / h - 1)) < / exp x * eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

1 * Rabs ((exp h - 1) / h - 1) < / exp x * eps
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x <> 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

Rabs ((exp h - 1) / h - 1) < eps * / exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x <> 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

exp x <> 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

exp x >= 0
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x
exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

exp x * ((exp h - 1) / h - 1) = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

exp x * ((exp h - 1) / h) - exp x * 1 = (exp (x + h) - exp x) / h - exp x
x:R
H0:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps0
eps:R
H:0 < eps
H1:0 < eps / exp x
del:posreal
H2:forall h0 : R, h0 <> 0 -> Rabs h0 < del -> Rabs ((exp (0 + h0) - exp 0) / h0 - 1) < eps / exp x
h:R
H3:h <> 0
H4:Rabs h < del
H5:Rabs ((exp h - 1) / h - 1) < eps / exp x

(exp x * exp h - exp x * 1) * / h - exp x = (exp (x + h) - exp x) * / h - exp x
rewrite Rmult_1_r; rewrite exp_plus; reflexivity. Qed.