Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import Ranalysis1.
Require Import Rtopology.
Local Open Scope R_scope.

(* The Mean Value Theorem *)

forall (f g : R -> R) (a b : R) (pr1 : forall c : R, a < c < b -> derivable_pt f c) (pr2 : forall c : R, a < c < b -> derivable_pt g c), a < b -> (forall c : R, a <= c <= b -> continuity_pt f c) -> (forall c : R, a <= c <= b -> continuity_pt g c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)

forall (f g : R -> R) (a b : R) (pr1 : forall c : R, a < c < b -> derivable_pt f c) (pr2 : forall c : R, a < c < b -> derivable_pt g c), a < b -> (forall c : R, a <= c <= b -> continuity_pt f c) -> (forall c : R, a <= c <= b -> continuity_pt g c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R

(forall c : R, a < c < b -> derivable_pt h c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c

(forall c : R, a <= c <= b -> continuity_pt h c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx : R, (forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx : R, (forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
H5:exists mx : R, (forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx : R, (forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b

h a = h b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R

(forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m

(forall c : R, a <= c <= b -> h c = M) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

a < (a + b) / 2 < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
(*** h constant ***)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b

exists P : a < (a + b) / 2 < b, (g b - g a) * derive_pt f ((a + b) / 2) (pr1 ((a + b) / 2) P) = (f b - f a) * derive_pt g ((a + b) / 2) (pr2 ((a + b) / 2) P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b

(g b - g a) * derive_pt f ((a + b) / 2) (pr1 ((a + b) / 2) H13) = (f b - f a) * derive_pt g ((a + b) / 2) (pr2 ((a + b) / 2) H13)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b

a < (a + b) / 2
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
forall x : R, a < x -> x < b -> h x = h ((a + b) / 2)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b

(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
forall x : R, a < x -> x < b -> h x = h ((a + b) / 2)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b

forall x : R, a < x -> x < b -> h x = h ((a + b) / 2)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
x:R
H14:a < x
H15:x < b

h x = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
x:R
H14:a < x
H15:x < b
a <= (a + b) / 2 <= b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
H13:a < (a + b) / 2 < b
x:R
H14:a < x
H15:x < b

a <= (a + b) / 2 <= b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

a < (a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

a < (a + b) / 2
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

0 < 2
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
2 * a < 2 * ((a + b) / 2)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

2 * a < 2 * ((a + b) / 2)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

2 * a < 1 * (a + b)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
2 <> 0
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

2 <> 0
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

(a + b) / 2 < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

0 < 2
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
2 * ((a + b) / 2) < 2 * b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

2 * ((a + b) / 2) < 2 * b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

1 * (a + b) < 2 * b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M
2 <> 0
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
H12:forall c : R, a <= c <= b -> h c = M

2 <> 0
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m
forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a = m

forall c : R, a <= c <= b -> h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)
H10:h a = M
H11:h a = m
c:R
H12:a <= c <= b
H13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mx

h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)
H10:h a = M
H11:h a = m
c:R
H12:a <= c <= b
H13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mx
H14:forall c0 : R, a <= c0 <= b -> h mx <= h c0

h c = M
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)
H10:h a = M
H11:h a = m
c:R
H12:a <= c <= b
H13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mx
H14:forall c0 : R, a <= c0 <= b -> h mx <= h c0

h c <= M
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)
H10:h a = M
H11:h a = m
c:R
H12:a <= c <= b
H13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mx
H14:forall c0 : R, a <= c0 <= b -> h mx <= h c0
M <= h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)
H10:h a = M
H11:h a = m
c:R
H12:a <= c <= b
H13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mx
H14:forall c0 : R, a <= c0 <= b -> h mx <= h c0

M <= h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m

a < mx < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
(*** h admet un minimum global sur [a,b] ***)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b

exists P : a < mx < b, (g b - g a) * derive_pt f mx (pr1 mx P) = (f b - f a) * derive_pt g mx (pr2 mx P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b

(g b - g a) * derive_pt f mx (pr1 mx H12) = (f b - f a) * derive_pt g mx (pr2 mx H12)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b

a < mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b
mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b
forall x : R, a < x -> x < b -> h mx <= h x
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b

mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b
forall x : R, a < x -> x < b -> h mx <= h x
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b

forall x : R, a < x -> x < b -> h mx <= h x
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a < mx < b
x:R
H13:a < x
H14:x < b
H15:forall c : R, a <= c <= b -> h mx <= h c
H16:a <= mx <= b

h mx <= h x
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m

a < mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b

a < mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:a < mx

a < mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:a = mx
a < mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:a = mx

a < mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b

mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:mx < b

mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:mx = b
mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a = M
H11:h a <> m
H12:a <= mx <= b
H13:a <= mx
H14:mx <= b
H15:mx = b

mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M

exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M

a < Mx < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
(*** h admet un maximum global sur [a,b] ***)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b

exists P : a < Mx < b, (g b - g a) * derive_pt f Mx (pr1 Mx P) = (f b - f a) * derive_pt g Mx (pr2 Mx P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b

(g b - g a) * derive_pt f Mx (pr1 Mx H11) = (f b - f a) * derive_pt g Mx (pr2 Mx H11)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b

a < Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b
Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b
forall x : R, a < x -> x < b -> h x <= h Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b

Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b
forall x : R, a < x -> x < b -> h x <= h Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b

forall x : R, a < x -> x < b -> h x <= h Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a < Mx < b
x:R
H12:a < x
H13:x < b
H14:forall c : R, a <= c <= b -> h c <= h Mx
H15:a <= Mx <= b

a <= x <= b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M

a < Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b

a < Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:a < Mx

a < Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:a = Mx
a < Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:a = Mx

a < Mx
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b

Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:Mx < b

Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:Mx = b
Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
H9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
H10:h a <> M
H11:a <= Mx <= b
H12:a <= Mx
H13:Mx <= b
H14:Mx = b

Mx < b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R

forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0
H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= b
Mx:R
H6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= b
H8:h a = h b
M:=h Mx:R
m:=h mx:R
c:R
P:a < c < b

derive_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) c (derivable_pt_minus (fct_cte (g b - g a) * f)%F (fct_cte (f b - f a) * g)%F c (derivable_pt_mult (fct_cte (g b - g a)) f c (derivable_pt_const (g b - g a) c) (pr1 c P)) (derivable_pt_mult (fct_cte (f b - f a)) g c (derivable_pt_const (f b - f a) c) (pr2 c P))) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b
h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
H3:forall c : R, a <= c <= b -> continuity_pt h c
H4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= b
H5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= b
Mx:R
H6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= b
mx:R
H7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= b

h a = h b
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c
forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c : R, a < c < b -> derivable_pt h c

forall c : R, a <= c <= b -> continuity_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b

continuity_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b

continuity_pt (fct_cte (g b - g a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt f c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt g c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b

continuity_pt f c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt g c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b

continuity_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b
continuity_pt g c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
X:forall c0 : R, a < c0 < b -> derivable_pt h c0
c:R
H3:a <= c <= b

continuity_pt g c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c : R, a < c < b -> derivable_pt f c
pr2:forall c : R, a < c < b -> derivable_pt g c
H:a < b
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt g c
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R

forall c : R, a < c < b -> derivable_pt h c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b

derivable_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b

derivable_pt (fct_cte (g b - g a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt f c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt g c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b

derivable_pt f c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt g c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b

derivable_pt (fct_cte (f b - f a)) c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b
derivable_pt g c
f, g:R -> R
a, b:R
pr1:forall c0 : R, a < c0 < b -> derivable_pt f c0
pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0
H:a < b
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0
H2:a <= b
h:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R
c:R
H3:a < c < b

derivable_pt g c
apply (pr2 _ H3). Qed. (* Corollaries ... *)

forall (f : R -> R) (a b : R) (pr : derivable f), a < b -> exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b

forall (f : R -> R) (a b : R) (pr : derivable f), a < b -> exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c : R, a < c < b -> derivable_pt f c

exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c : R, a < c < b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt id c

exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c : R, a < c < b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt id c
H0:forall c : R, a <= c <= b -> continuity_pt f c

exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c : R, a < c < b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt id c
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt id c

exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c : R, a < c < b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt id c
H0:forall c : R, a <= c <= b -> continuity_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt id c
H2:exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)

exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)

exists c0 : R, f b - f a = derive_pt f c0 (pr c0) * (b - a) /\ a < c0 < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)

f b - f a = derive_pt f c (pr c) * (b - a)
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)
a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)
H5:derive_pt id c (X0 c P) = derive_pt id c (derivable_pt_id c)

f b - f a = derive_pt f c (pr c) * (b - a)
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)
a < c < b
f:R -> R
a, b:R
pr:derivable f
H:a < b
X:forall c0 : R, a < c0 < b -> derivable_pt f c0
X0:forall c0 : R, a < c0 < b -> derivable_pt id c0
H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0
H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0
c:R
P:a < c < b
H4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)

a < c < b
apply P. Qed.

forall (f f' : R -> R) (a b : R), a < b -> (forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b

forall (f f' : R -> R) (a b : R), a < b -> (forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)

(forall c : R, a <= c <= b -> derivable_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c

(forall c : R, a < c < b -> derivable_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c

(forall c : R, a <= c <= b -> continuity_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c

(forall c : R, a <= c <= b -> derivable_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c

(forall c : R, a < c < b -> derivable_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c

(forall c : R, a <= c <= b -> continuity_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

exists c : R, f b - f a = f' c * (b - a) /\ a < c < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

f b - f a = f' x * (b - a)
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

derive_pt id x (X2 x P) = 1 -> f b - f a = f' x * (b - a)
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
derive_pt id x (X2 x P) = 1
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

derive_pt f x (X0 x P) = f' x -> derive_pt id x (X2 x P) = 1 -> f b - f a = f' x * (b - a)
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
derive_pt f x (X0 x P) = f' x
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
derive_pt id x (X2 x P) = 1
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

derive_pt f x (X0 x P) = f' x
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
derive_pt id x (X2 x P) = 1
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

derive_pt id x (X2 x P) = 1
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)
a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
H2:forall c : R, a <= c <= b -> continuity_pt id c
x:R
P:a < x < b
H3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)

a < x < b
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c
forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
X2:forall c : R, a < c < b -> derivable_pt id c

forall c : R, a <= c <= b -> continuity_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c
forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
X1:forall c : R, a <= c <= b -> derivable_pt id c

forall c : R, a < c < b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c
forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
H1:forall c : R, a <= c <= b -> continuity_pt f c

forall c : R, a <= c <= b -> derivable_pt id c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c
forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
X0:forall c : R, a < c < b -> derivable_pt f c

forall c : R, a <= c <= b -> continuity_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c
forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
X:forall c : R, a <= c <= b -> derivable_pt f c

forall c : R, a < c < b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)
forall c : R, a <= c <= b -> derivable_pt f c
f, f':R -> R
a, b:R
H:a < b
H0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)

forall c : R, a <= c <= b -> derivable_pt f c
intros; unfold derivable_pt; exists (f' c); apply H0; apply H1. Qed.

forall (f f' : R -> R) (a b : R), a < b -> (forall x : R, a <= x -> x <= b -> derivable_pt_lim f x (f' x)) -> exists c : R, a <= c /\ c <= b /\ f b = f a + f' c * (b - a)

forall (f f' : R -> R) (a b : R), a < b -> (forall x : R, a <= x -> x <= b -> derivable_pt_lim f x (f' x)) -> exists c : R, a <= c /\ c <= b /\ f b = f a + f' c * (b - a)
intros f f' a b H H0; assert (H1 : exists c : R, f b - f a = f' c * (b - a) /\ a < c < b); [ apply MVT_cor2; [ apply H | intros; elim H1; intros; apply (H0 _ H2 H3) ] | elim H1; intros; exists x; elim H2; intros; elim H4; intros; split; [ left; assumption | split; [ left; assumption | rewrite <- H3; ring ] ] ]. Qed.

forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> a < b -> f a = f b -> exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0

forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> a < b -> f a = f b -> exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b

forall x : R, a < x < b -> derivable_pt id x
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x

exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)

forall x : R, a <= x <= b -> continuity_pt id x
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)
H4:forall x : R, a <= x <= b -> continuity_pt id x
exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)
H4:forall x : R, a <= x <= b -> continuity_pt id x

exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)
H4:forall x : R, a <= x <= b -> continuity_pt id x
c:R
P:a < c < b
H6:(id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)

exists (c0 : R) (P0 : a < c0 < b), derive_pt f c0 (pr c0 P0) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)
H4:forall x : R, a <= x <= b -> continuity_pt id x
c:R
P:a < c < b
H6:(id b - id a) * derive_pt f c (pr c P) = (f b - f b) * derive_pt id c (H2 c P)

derive_pt f c (pr c P) = 0
f:R -> R
a, b:R
pr:forall x : R, a < x < b -> derivable_pt f x
H:forall x : R, a <= x <= b -> continuity_pt f x
H0:a < b
H1:f a = f b
H2:forall x : R, a < x < b -> derivable_pt id x
H3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)
H4:forall x : R, a <= x <= b -> continuity_pt id x
c:R
P:a < c < b
H6:(b + - a) * derive_pt f c (pr c P) = 0 * derive_pt (fun x : R => x) c (H2 c P)

derive_pt f c (pr c P) = 0
rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a); [ rewrite Rmult_0_r; apply H6 | apply Rminus_eq_contra; red; intro H7; rewrite H7 in H0; elim (Rlt_irrefl _ H0) ]. Qed. (**********)

forall (f : R -> R) (pr : derivable f), (forall x : R, 0 <= derive_pt f x (pr x)) -> increasing f

forall (f : R -> R) (pr : derivable f), (forall x : R, 0 <= derive_pt f x (pr x)) -> increasing f
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)

increasing f
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)

forall x y : R, x <= y -> f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y

f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y

f x <= f y
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y

- f x + f x <= - f x + f y
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y

0 <= f y + - f x
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y - f x = derive_pt f c (pr c) * (y - x)
H4:x < c < y

0 <= f y + - f x
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y

0 <= f y + - f x
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y

0 <= derive_pt f c (pr c) * (y + - x)
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y

0 <= derive_pt f c (pr c)
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y
0 <= y + - x
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y

0 <= y + - x
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x < y
c:R
H3:f y + - f x = derive_pt f c (pr c) * (y + - x)
H4:x < c < y

x + 0 <= x + (y + - x)
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y
f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x : R, 0 <= derive_pt f x (pr x)
y:R
H0:y <= y

f y <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y
f x <= f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 <= derive_pt f x0 (pr x0)
x, y:R
H0:x <= y
H1:x > y

f x <= f y
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 H1)). Qed. (**********)

forall (f : R -> R) (pr : derivable f), decreasing f -> forall x : R, derive_pt f x (pr x) <= 0

forall (f : R -> R) (pr : derivable f), decreasing f -> forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l

derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l < 0

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l = 0

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l

0 < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

(f (x + delta / 2) - f x) / (delta / 2) <= 0 -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l) -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0

- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l < l / 2 + - l -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l < - (l / 2) -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2) -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)

- - ((f (x + delta / 2) + - f x) / (delta / 2)) > - - (l / 2) -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)

(f (x + delta / 2) + - f x) / (delta / 2) > l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)
H16:(f (x + delta / 2) + - f x) / (delta / 2) > l / 2

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)
H16:(f (x + delta / 2) + - f x) / (delta / 2) > l / 2
H17:0 < (f (x + delta / 2) - f x) / (delta / 2)

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2
- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- (l / 2) = l / 2 + - l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0
H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2

- (l / 2) = l / 2 + - (l / 2 + l / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0

(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2

- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= - 0 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2

- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= 0 -> l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2
H15:- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= 0

l <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 < (f x - f (x + delta / 2)) / (delta / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 < (f x + - f (x + delta / 2)) / (delta / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 <= (f x + - f (x + delta / 2)) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 <= f x + - f (x + delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

x <= x + delta * / 2 -> 0 <= f x + - f (x + delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
x <= x + delta * / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

x <= x + delta * / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

0 < l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0
(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x - f (x + delta / 2)) / (delta / 2) + l = l - (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta / 2)) / (delta / 2) + l = l + - ((f (x + delta / 2) + - f x) / (delta / 2))
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) + - f x) / (delta / 2)) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = - ((f (x + delta * / 2) + - f x) * / (delta * / 2)) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = - (f (x + delta * / 2) + - f x) * / (delta * / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = (- f (x + delta * / 2) + - - f x) * / (delta * / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = (- f (x + delta * / 2) + f x) * / (delta * / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:(f (x + delta / 2) - f x) / (delta / 2) <= 0

(- f (x + delta * / 2) + f x) * / (delta * / 2) + l = (- f (x + delta * / 2) + f x) * / (delta * / 2) + l
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

(f (x + delta / 2) - f x) / (delta / 2) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

- ((f x - f (x + delta / 2)) / (delta / 2)) <= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

- ((f x - f (x + delta / 2)) / (delta / 2)) <= - 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

(f x - f (x + delta / 2)) / (delta / 2) >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

0 <= (f x - f (x + delta / 2)) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

0 <= f x - f (x + delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

x <= x + delta * / 2 -> 0 <= f x - f (x + delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
x <= x + delta * / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
H10:x <= x + delta * / 2
H13:f (x + delta * / 2) <= f x

0 <= f x - f (x + delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
x <= x + delta * / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

x <= x + delta * / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta
- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

- (f x - f (x + delta * / 2)) * / (delta * / 2) = (f (x + delta * / 2) - f x) * / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H9:delta / 2 <> 0
H11:0 < delta / 2
H12:Rabs (delta / 2) < delta

(f (x + delta * / 2) - f x) * / (delta * / 2) = (f (x + delta * / 2) - f x) * / (delta * / 2)
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta / 2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
/ 2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

/ 2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

0 < delta / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta / 2 < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

0 < 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
2 * (delta * / 2) < 2 * delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

2 * (delta * / 2) < 2 * delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

1 * delta < 2 * delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta + 0 < delta + delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

2 <> 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

delta / 2 >= 0
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

0 < delta
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2
0 < / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2

0 < / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l
0 < l / 2
f:R -> R
pr:derivable f
H:decreasing f
x:R
H0:forall x0 y : R, x0 <= y -> f y <= f x0
H1:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H2:derive_pt f x (pr x) = l
H3:l = 0 \/ l > 0
H4:l > 0
H5:derivable_pt_lim f x l

0 < l / 2
unfold Rdiv; apply Rmult_lt_0_compat; [ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. (**********)

forall f : R -> R, increasing f -> decreasing (- f)%F

forall f : R -> R, increasing f -> decreasing (- f)%F
unfold increasing, decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption. Qed. (**********)

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) <= 0) -> decreasing f

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) <= 0) -> decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0

decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0

(forall h : R, - - f h = f h) -> decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
H0:forall h : R, - - f h = f h

decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
H0:forall h : R, - - f h = f h

(increasing (- f)%F -> decreasing (- - f)%F) -> decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
H0:forall h : R, - - f h = f h

(increasing (- f)%F -> forall x y : R, x <= y -> (- - f)%F y <= (- - f)%F x) -> forall x y : R, x <= y -> f y <= f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
H0:forall h : R, - - f h = f h

(increasing (fun x : R => - f x) -> forall x y : R, x <= y -> - - f y <= - - f x) -> forall x y : R, x <= y -> f y <= f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

f y <= f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

- - f y <= - - f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

increasing (fun x0 : R => - f x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

(forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)) -> increasing (fun x0 : R => - f x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
H3:forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)

increasing (fun x0 : R => - f x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
H3:forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)

increasing (- f)%F
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R

0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0) -> 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)

0 <= derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)

0 <= derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0))
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)

0 <= - derive_pt f x0 (pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1
x, y:R
H2:x <= y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y
x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) <= 0
H0:forall h : R, - - f h = f h
H1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0
x, y:R
H2:x <= y

x <= y
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) <= 0

forall h : R, - - f h = f h
intro; ring. Qed. (**********)

forall (f : R -> R) (pr : derivable f), (forall x : R, 0 < derive_pt f x (pr x)) -> strict_increasing f

forall (f : R -> R) (pr : derivable f), (forall x : R, 0 < derive_pt f x (pr x)) -> strict_increasing f
f:R -> R
pr:derivable f
H:forall x : R, 0 < derive_pt f x (pr x)

strict_increasing f
f:R -> R
pr:derivable f
H:forall x : R, 0 < derive_pt f x (pr x)

forall x y : R, x < y -> f x < f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 < derive_pt f x0 (pr x0)
x, y:R
H0:x < y

f x < f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 < derive_pt f x0 (pr x0)
x, y:R
H0:x < y

- f x + f x < - f x + f y
f:R -> R
pr:derivable f
H:forall x0 : R, 0 < derive_pt f x0 (pr x0)
x, y:R
H0:x < y

0 < f y + - f x
f:R -> R
pr:derivable f
H:forall x0 : R, 0 < derive_pt f x0 (pr x0)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y

0 < f y + - f x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y

0 < f y + - f x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y - f x = derive_pt f x0 (pr x0) * (y - x)
H4:x < x0 < y

0 < f y + - f x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y

0 < f y + - f x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y

0 < derive_pt f x0 (pr x0) * (y + - x)
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y

0 < derive_pt f x0 (pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y
0 < y + - x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y

0 < y + - x
f:R -> R
pr:derivable f
H:forall x1 : R, 0 < derive_pt f x1 (pr x1)
x, y:R
H0:x < y
H1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H4:x < x0 < y

x + 0 < x + (y + - x)
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ]. Qed. (**********)

forall f : R -> R, strict_increasing f -> strict_decreasing (- f)%F

forall f : R -> R, strict_increasing f -> strict_decreasing (- f)%F
unfold strict_increasing, strict_decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; assumption. Qed. (**********)

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) < 0) -> strict_decreasing f

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) < 0) -> strict_decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0

strict_decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0

(forall h : R, - - f h = f h) -> strict_decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
H0:forall h : R, - - f h = f h

strict_decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
H0:forall h : R, - - f h = f h

(strict_increasing (- f)%F -> strict_decreasing (- - f)%F) -> strict_decreasing f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
H0:forall h : R, - - f h = f h

(strict_increasing (fun x : R => - f x) -> forall x y : R, x < y -> - - f y < - - f x) -> forall x y : R, x < y -> f y < f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

f y < f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

f y < - - f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

- - f y < - - f x
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

strict_increasing (fun x0 : R => - f x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

(forall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)) -> strict_increasing (fun x0 : R => - f x0)
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y
forall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x0 : R, derive_pt f x0 (pr x0) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0
x, y:R
H2:x < y

forall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R

0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0) -> 0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)

0 < derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)

0 < - derive_pt f x0 (pr x0)
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)
derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x1 : R, derive_pt f x1 (pr x1) < 0
H0:forall h : R, - - f h = f h
H1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1
x, y:R
H2:x < y
x0:R
H3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)

derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0
forall h : R, - - f h = f h
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) < 0

forall h : R, - - f h = f h
intro; ring. Qed. (**********)

forall (f : R -> R) (pr : derivable f), constant f -> forall x : R, derive_pt f x (pr x) = 0

forall (f : R -> R) (pr : derivable f), constant f -> forall x : R, derive_pt f x (pr x) = 0
f:R -> R
pr:derivable f
H:constant f
x:R

derive_pt f x (pr x) = 0
f:R -> R
pr:derivable f
H:forall x0 y : R, f x0 = f y
x:R

derive_pt f x (pr x) = 0
f:R -> R
pr:derivable f
H:forall x0 y : R, f x0 = f y
x:R

derivable_pt_lim f x 0
f:R -> R
pr:derivable f
H:forall x0 y : R, f x0 = f y
x, eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < 1

Rabs ((f (x + h) - f x) / h - 0) < eps
rewrite (H x (x + h)); unfold Rminus; unfold Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. (**********)

forall f : R -> R, increasing f -> decreasing f -> constant f

forall f : R -> R, increasing f -> decreasing f -> constant f
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x < y

f x = f y
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x = y \/ x > y
f x = f y
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x = y \/ x > y

f x = f y
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x = y \/ x > y
H2:x = y

f x = f y
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x = y \/ x > y
H2:x > y
f x = f y
f:R -> R
H:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0
H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0
x, y:R
H1:x = y \/ x > y
H2:x > y

f x = f y
generalize (Rlt_le y x H2); intro; symmetry ; apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). Qed. (**********)

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) = 0) -> constant f

forall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) = 0) -> constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0

constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0

(forall x : R, derive_pt f x (pr x) <= 0) -> constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0

(forall x : R, 0 <= derive_pt f x (pr x)) -> (forall x : R, derive_pt f x (pr x) <= 0) -> constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
H0:forall x : R, 0 <= derive_pt f x (pr x)
H1:forall x : R, derive_pt f x (pr x) <= 0

constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
H0:forall x : R, 0 <= derive_pt f x (pr x)
H1:forall x : R, derive_pt f x (pr x) <= 0
H2:increasing f

constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
H0:forall x : R, 0 <= derive_pt f x (pr x)
H1:forall x : R, derive_pt f x (pr x) <= 0
H2:increasing f
H3:decreasing f

constant f
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0

forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0
forall x : R, derive_pt f x (pr x) <= 0
f:R -> R
pr:derivable f
H:forall x : R, derive_pt f x (pr x) = 0

forall x : R, derive_pt f x (pr x) <= 0
intro; right; apply (H x). Qed. (**********)

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> ((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> ((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)
a, b:R
f:R -> R
pr:derivable f
H:a < b

((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

f x < f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

- f x + f x < - f x + f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

0 < f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y

0 < f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y

0 < f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y - f x = derive_pt f x0 (pr x0) * (y - x)
H7:x < x0 < y

0 < f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 < f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 < derive_pt f x0 (pr x0) * (y + - x)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 < derive_pt f x0 (pr x0)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

a < x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

a < x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

a < x0
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
H10:a <= x
H11:x <= b

a < x0
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
H10:a <= y
H11:y <= b

x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 < y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

x + 0 < x + (y + - x)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

f x <= f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

- f x + f x <= - f x + f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

0 <= f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y

0 <= f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y

0 <= f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y - f x = derive_pt f x0 (pr x0) * (y - x)
H7:x < x0 < y

0 <= f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 <= f y + - f x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 <= derive_pt f x0 (pr x0) * (y + - x)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 <= derive_pt f x0 (pr x0)
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

a < x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

a < x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

a < x0
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
H10:a <= x
H11:x <= b

a < x0
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y

x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
H8:x < x0
H9:x0 < y
H10:a <= y
H11:y <= b

x0 < b
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y
0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

0 <= y + - x
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y
x0:R
H5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y
H6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)
H7:x < x0 < y

x + 0 <= x + (y + - x)
rewrite Rplus_0_r; replace (x + (y + - x)) with y; [ left; assumption | ring ]. Qed. (**********)

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y

f x < f y
a, b:R
f:R -> R
pr:derivable f
H:a < b
H0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)
x, y:R
H1:a <= x <= b
H2:a <= y <= b
H3:x < y
H4:((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x0 y0 : R, a <= x0 <= b -> a <= y0 <= b -> x0 < y0 -> f x0 < f y0) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x0 y0 : R, a <= x0 <= b -> a <= y0 <= b -> x0 < y0 -> f x0 <= f y0)

f x < f y
elim H4; intros H5 _; apply (H5 H0 x y H1 H2 H3). Qed. (**********)

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y

forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y
intros a b f pr H H0 x y H1 H2 H3; generalize (derive_increasing_interv_ax a b f pr H); intro; elim H4; intros _ H5; apply (H5 H0 x y H1 H2 H3). Qed. (**********) (**********)

forall (f : R -> R) (a b k : R) (pr : derivable f), a <= b -> (forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k) -> f b - f a <= k * (b - a)

forall (f : R -> R) (a b k : R) (pr : derivable f), a <= b -> (forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k) -> f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k

f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a < b

f b - f a <= k * (b - a)
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

derive_pt f c (pr c) * (b - a) <= k * (b - a)
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

(b - a) * derive_pt f c (pr c) <= (b - a) * k
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

0 <= b - a
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b
derive_pt f c (pr c) <= k
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

a <= a + (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b
derive_pt f c (pr c) <= k
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

derive_pt f c (pr c) <= k
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b

a <= c <= b
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= k
H1:a < b
c:R
H4:a < c < b
H2:a < c
H3:c < b

a <= c <= b
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b
f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b

f b - f b <= k * (b - b)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
b, k:R
pr:derivable f
H0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= k
H:b <= b

0 <= k * 0
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b
f b - f a <= k * (b - a)
f:R -> R
a, b, k:R
pr:derivable f
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k
H1:a > b

f b - f a <= k * (b - a)
elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H H1)). Qed.

forall (f g : R -> R) (a b : R) (pr1 : derivable f) (pr2 : derivable g), a <= b -> (forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)) -> g b - g a <= f b - f a

forall (f g : R -> R) (a b : R) (pr1 : derivable f) (pr2 : derivable g), a <= b -> (forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)) -> g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)

g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)

derivable (g - f) -> g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)

g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)

(forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0) -> g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0

g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
H2:(g - f)%F b - (g - f)%F a <= 0 * (b - a)

g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
H2:g b - f b - (g a - f a) <= 0

g b - g a <= f b - f a
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
H2:g b - f b - (g a - f a) <= 0

- f b + f a + (g b - g a) <= - f b + f a + (f b - f a)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
H2:g b - f b - (g a - f a) <= 0

- f b + f a + (g b - g a) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)
forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
X:derivable (g - f)

forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b

derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b

derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c)) -> derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt (g - f) c (X c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c)) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt g c (pr2 c) - derive_pt f c (pr1 c) <= 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt f c (pr1 c) + (derive_pt g c (pr2 c) - derive_pt f c (pr1 c)) <= derive_pt f c (pr1 c) + 0
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt f c (pr1 c) + (derive_pt g c (pr2 c) - derive_pt f c (pr1 c)) <= derive_pt f c (pr1 c)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
H2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))

derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b
derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)
X:derivable (g - f)
c:R
H1:a <= c <= b

derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)
derivable (g - f)
f, g:R -> R
a, b:R
pr1:derivable f
pr2:derivable g
H:a <= b
H0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)

derivable (g - f)
apply derivable_minus; assumption. Qed. (* If f has a null derivative in ]a,b[ and is continue in [a,b], *) (* then f is constant on [a,b] *)

forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> (forall (x : R) (P : a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x : R => a <= x <= b) (f a)

forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> (forall (x : R) (P : a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x : R => a <= x <= b) (f a)
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b

forall y : R, a < y < x -> derivable_pt id y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y

forall y : R, a <= y <= x -> continuity_pt id y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y

forall y : R, a < y < x -> derivable_pt f y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
y:R
H4:a < y < x
H5:a < y
H6:y < x

a < y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
y:R
H4:a < y < x
H5:a < y
H6:y < x
y < b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
y:R
H4:a < y < x
H5:a < y
H6:y < x

y < b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y

forall y : R, a <= y <= x -> continuity_pt f y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
H4:forall y0 : R, a < y0 < x -> derivable_pt f y0
y:R
H5:a <= y <= x
H6:a <= y
H7:y <= x

a <= y
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
H4:forall y0 : R, a < y0 < x -> derivable_pt f y0
y:R
H5:a <= y <= x
H6:a <= y
H7:y <= x
y <= b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y0 : R, a < y0 < x -> derivable_pt id y0
H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0
H4:forall y0 : R, a < y0 < x -> derivable_pt f y0
y:R
H5:a <= y <= x
H6:a <= y
H7:y <= x

y <= b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
H7:exists (c : R) (P : a < c < x), (id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)

a < c < b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)

a < c
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
c < b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)

c < b
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b

derive_pt f c (H4 c P) = 0
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
H11:derive_pt f c (H4 c P) = 0
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
H11:derive_pt f c (H4 c P) = 0

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
H11:derive_pt f c (H4 c P) = 0

derive_pt id c (H2 c P) = 1
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
H11:derive_pt f c (H4 c P) = 0
H12:derive_pt id c (H2 c P) = 1
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a < x
c:R
P:a < c < x
H9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)
H10:a < c < b
H11:derive_pt f c (H4 c P) = 0
H12:derive_pt id c (H2 c P) = 1

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
Hlt:a < b
H2:forall y : R, a < y < x -> derivable_pt id y
H3:forall y : R, a <= y <= x -> continuity_pt id y
H4:forall y : R, a < y < x -> derivable_pt f y
H5:forall y : R, a <= y <= x -> continuity_pt f y
H6:x <= b
H1:a = x

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b

x = a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
H2:x = a
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Heq:a = b
H2:x = a

f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b
f x = f a
f:R -> R
a, b:R
pr:forall x0 : R, a < x0 < b -> derivable_pt f x0
H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0
H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0
x:R
H1:a <= x <= b
Hgt:a > b

f x = f a
elim H1; intros; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H2 H3) Hgt)). Qed. (* Unicity of the antiderivative *)

forall (f g1 g2 : R -> R) (a b : R), antiderivative f g1 a b -> antiderivative f g2 a b -> exists c : R, forall x : R, a <= x <= b -> g1 x = g2 x + c

forall (f g1 g2 : R -> R) (a b : R), antiderivative f g1 a b -> antiderivative f g2 a b -> exists c : R, forall x : R, a <= x <= b -> g1 x = g2 x + c
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b

forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0

g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0

forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0

g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0

forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0

g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0

forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0

g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0

forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 pr
H1:a <= b
H0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 pr
x:R
H2:a <= x <= b
H3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1
H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1
H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1
H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1
x0:R
P:a < x0 < b
H7:a < x0
H8:x0 < b

derivable_pt_lim (g1 - g2) x0 (f x0 - f x0)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 pr
H1:a <= b
H0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 pr
x:R
H2:a <= x <= b
H3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1
H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1
H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1
H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1
x0:R
P:a < x0 < b
H7:a < x0
H8:x0 < b

a <= x0 <= b
f, g1, g2:R -> R
a, b:R
H:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 pr
H1:a <= b
H0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 pr
x:R
H2:a <= x <= b
H3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1
H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1
H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1
H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1
x0:R
P:a < x0 < b
H7:a < x0
H8:x0 < b
H9:a <= x0 <= b
derivable_pt_lim (g1 - g2) x0 (f x0 - f x0)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 pr
H1:a <= b
H0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 pr
x:R
H2:a <= x <= b
H3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1
H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1
H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1
H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1
x0:R
P:a < x0 < b
H7:a < x0
H8:x0 < b
H9:a <= x0 <= b

derivable_pt_lim (g1 - g2) x0 (f x0 - f x0)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0
g1 x = g2 x + (g1 a - g2 a)
f, g1, g2:R -> R
a, b:R
H:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 pr
H1:a <= b
H0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 pr
x:R
H2:a <= x <= b
H3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0
H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0
H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0
H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0
H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0

g1 x = g2 x + (g1 a - g2 a)
assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7); unfold constant_D_eq in H8; assert (H9 := H8 _ H2); unfold minus_fct in H9; rewrite <- H9; ring. Qed. (* A variant of MVT using absolute values. *)

forall (f f' : R -> R) (a b : R), (forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b

forall (f f' : R -> R) (a b : R), (forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
ab:a = b

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
ab:a = b

Rabs (f b + - f a) = Rabs (f' a) * Rabs (b + - a)
f, f':R -> R
a, b:R
aleb:a <= b
ab:a = b
Rmin a b <= a <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
ab:a = b

Rmin a b <= a <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b
derv:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)

exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ a <= c <= b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
aleb:a <= b
anb:a <> b
derv:forall c0 : R, a <= c0 <= b -> derivable_pt_lim f c0 (f' c0)
c:R
hc:f b - f a = f' c * (b - a)
intc:a < c < b

exists c0 : R, Rabs (f b - f a) = Rabs (f' c0) * Rabs (b - a) /\ a <= c0 <= b
f, f':R -> R
a, b:R
blta:~ a <= b
(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
H:b < a

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
H:b < a
H0:b <= a

(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a b
f, f':R -> R
a, b:R
blta:~ a <= b
H:b < a
H0:b <= a
derv:forall c : R, b <= c <= a -> derivable_pt_lim f c (f' c)

exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ b <= c <= a
f, f':R -> R
a, b:R
blta:~ a <= b
H:b < a
H0:b <= a
derv:forall c0 : R, b <= c0 <= a -> derivable_pt_lim f c0 (f' c0)
c:R
hc:f a - f b = f' c * (a - b)
intc:b < c < a

exists c0 : R, Rabs (f b - f a) = Rabs (f' c0) * Rabs (b - a) /\ b <= c0 <= a
f, f':R -> R
a, b:R
blta:~ a <= b
H:b < a
H0:b <= a
derv:forall c0 : R, b <= c0 <= a -> derivable_pt_lim f c0 (f' c0)
c:R
hc:f a - f b = f' c * (a - b)
intc:b < c < a

Rabs (f' c) * Rabs (a - b) = Rabs (f' c) * Rabs (b - a) /\ b <= c <= a
split;[now rewrite <- (Rabs_Ropp (b - a)), Ropp_minus_distr| unfold Rle; tauto]. Qed.