Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Ranalysis1. Require Import Rtopology. Local Open Scope R_scope. (* The Mean Value Theorem *)forall (f g : R -> R) (a b : R) (pr1 : forall c : R, a < c < b -> derivable_pt f c) (pr2 : forall c : R, a < c < b -> derivable_pt g c), a < b -> (forall c : R, a <= c <= b -> continuity_pt f c) -> (forall c : R, a <= c <= b -> continuity_pt g c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)forall (f g : R -> R) (a b : R) (pr1 : forall c : R, a < c < b -> derivable_pt f c) (pr2 : forall c : R, a < c < b -> derivable_pt g c), a < b -> (forall c : R, a <= c <= b -> continuity_pt f c) -> (forall c : R, a <= c <= b -> continuity_pt g c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> R(forall c : R, a < c < b -> derivable_pt h c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h c(forall c : R, a <= c <= b -> continuity_pt h c) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx : R, (forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx : R, (forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bH5:exists mx : R, (forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx : R, (forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:R(forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = m(forall c : R, a <= c <= b -> h c = M) -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h c(*** h constant ***)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bexists P : a < (a + b) / 2 < b, (g b - g a) * derive_pt f ((a + b) / 2) (pr1 ((a + b) / 2) P) = (f b - f a) * derive_pt g ((a + b) / 2) (pr2 ((a + b) / 2) P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < b(g b - g a) * derive_pt f ((a + b) / 2) (pr1 ((a + b) / 2) H13) = (f b - f a) * derive_pt g ((a + b) / 2) (pr2 ((a + b) / 2) H13)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < ba < (a + b) / 2f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < b(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bforall x : R, a < x -> x < b -> h x = h ((a + b) / 2)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < b(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bforall x : R, a < x -> x < b -> h x = h ((a + b) / 2)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bforall x : R, a < x -> x < b -> h x = h ((a + b) / 2)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bx:RH14:a < xH15:x < bh x = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bx:RH14:a < xH15:x < ba <= (a + b) / 2 <= bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = MH13:a < (a + b) / 2 < bx:RH14:a < xH15:x < ba <= (a + b) / 2 <= bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = Ma < (a + b) / 2f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M0 < 2f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 * a < 2 * ((a + b) / 2)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 * a < 2 * ((a + b) / 2)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 * a < 1 * (a + b)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 <> 0f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 <> 0f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M(a + b) / 2 < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M0 < 2f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 * ((a + b) / 2) < 2 * bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 * ((a + b) / 2) < 2 * bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M1 * (a + b) < 2 * bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 <> 0f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mH12:forall c : R, a <= c <= b -> h c = M2 <> 0f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a = mforall c : R, a <= c <= b -> h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)H10:h a = MH11:h a = mc:RH12:a <= c <= bH13:forall c0 : R, a <= c0 <= b -> h c0 <= h Mxh c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)H10:h a = MH11:h a = mc:RH12:a <= c <= bH13:forall c0 : R, a <= c0 <= b -> h c0 <= h MxH14:forall c0 : R, a <= c0 <= b -> h mx <= h c0h c = Mf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)H10:h a = MH11:h a = mc:RH12:a <= c <= bH13:forall c0 : R, a <= c0 <= b -> h c0 <= h MxH14:forall c0 : R, a <= c0 <= b -> h mx <= h c0h c <= Mf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)H10:h a = MH11:h a = mc:RH12:a <= c <= bH13:forall c0 : R, a <= c0 <= b -> h c0 <= h MxH14:forall c0 : R, a <= c0 <= b -> h mx <= h c0M <= h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c0 : R) (P : a < c0 < b), derive_pt h c0 (X c0 P) = (g b - g a) * derive_pt f c0 (pr1 c0 P) - (f b - f a) * derive_pt g c0 (pr2 c0 P)H10:h a = MH11:h a = mc:RH12:a <= c <= bH13:forall c0 : R, a <= c0 <= b -> h c0 <= h MxH14:forall c0 : R, a <= c0 <= b -> h mx <= h c0M <= h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h c(*** h admet un minimum global sur [a,b] ***)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bexists P : a < mx < b, (g b - g a) * derive_pt f mx (pr1 mx P) = (f b - f a) * derive_pt g mx (pr2 mx P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < b(g b - g a) * derive_pt f mx (pr1 mx H12) = (f b - f a) * derive_pt g mx (pr2 mx H12)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < ba < mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bforall x : R, a < x -> x < b -> h mx <= h xf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bforall x : R, a < x -> x < b -> h mx <= h xf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bforall x : R, a < x -> x < b -> h mx <= h xf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a < mx < bx:RH13:a < xH14:x < bH15:forall c : R, a <= c <= b -> h mx <= h cH16:a <= mx <= bh mx <= h xf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> ma < mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= ba < mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:a < mxa < mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:a = mxa < mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:a = mxa < mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:mx < bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:mx = bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a = MH11:h a <> mH12:a <= mx <= bH13:a <= mxH14:mx <= bH15:mx = bmx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Mexists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h c(*** h admet un maximum global sur [a,b] ***)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < b -> exists (c : R) (P : a < c < b), (g b - g a) * derive_pt f c (pr1 c P) = (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bexists P : a < Mx < b, (g b - g a) * derive_pt f Mx (pr1 Mx P) = (f b - f a) * derive_pt g Mx (pr2 Mx P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < b(g b - g a) * derive_pt f Mx (pr1 Mx H11) = (f b - f a) * derive_pt g Mx (pr2 Mx H11)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < ba < Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bforall x : R, a < x -> x < b -> h x <= h Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bforall x : R, a < x -> x < b -> h x <= h Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bforall x : R, a < x -> x < b -> h x <= h Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a < Mx < bx:RH12:a < xH13:x < bH14:forall c : R, a <= c <= b -> h c <= h MxH15:a <= Mx <= ba <= x <= bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> Ma < Mx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= ba < Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:a < Mxa < Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:a = Mxa < Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:a = Mxa < Mxf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:Mx < bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:Mx = bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:RH9:forall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)H10:h a <> MH11:a <= Mx <= bH12:a <= MxH13:Mx <= bH14:Mx = bMx < bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rforall (c : R) (P : a < c < b), derive_pt h c (X c P) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0H3:forall c0 : R, a <= c0 <= b -> continuity_pt h c0H4:exists Mx0 : R, (forall c0 : R, a <= c0 <= b -> h c0 <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c0 : R, a <= c0 <= b -> h mx0 <= h c0) /\ a <= mx0 <= bMx:RH6:(forall c0 : R, a <= c0 <= b -> h c0 <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c0 : R, a <= c0 <= b -> h mx <= h c0) /\ a <= mx <= bH8:h a = h bM:=h Mx:Rm:=h mx:Rc:RP:a < c < bderive_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) c (derivable_pt_minus (fct_cte (g b - g a) * f)%F (fct_cte (f b - f a) * g)%F c (derivable_pt_mult (fct_cte (g b - g a)) f c (derivable_pt_const (g b - g a) c) (pr1 c P)) (derivable_pt_mult (fct_cte (f b - f a)) g c (derivable_pt_const (f b - f a) c) (pr2 c P))) = (g b - g a) * derive_pt f c (pr1 c P) - (f b - f a) * derive_pt g c (pr2 c P)f, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cH3:forall c : R, a <= c <= b -> continuity_pt h cH4:exists Mx0 : R, (forall c : R, a <= c <= b -> h c <= h Mx0) /\ a <= Mx0 <= bH5:exists mx0 : R, (forall c : R, a <= c <= b -> h mx0 <= h c) /\ a <= mx0 <= bMx:RH6:(forall c : R, a <= c <= b -> h c <= h Mx) /\ a <= Mx <= bmx:RH7:(forall c : R, a <= c <= b -> h mx <= h c) /\ a <= mx <= bh a = h bf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c : R, a < c < b -> derivable_pt h cforall c : R, a <= c <= b -> continuity_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt (fct_cte (g b - g a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt f cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt g cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt f cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt g cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt g cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> RX:forall c0 : R, a < c0 < b -> derivable_pt h c0c:RH3:a <= c <= bcontinuity_pt g cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c : R, a < c < b -> derivable_pt f cpr2:forall c : R, a < c < b -> derivable_pt g cH:a < bH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt g cH2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rforall c : R, a < c < b -> derivable_pt h cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt (fct_cte (g b - g a) * f - fct_cte (f b - f a) * g) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt (fct_cte (g b - g a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt f cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt g cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt f cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt g cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt (fct_cte (f b - f a)) cf, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt g capply (pr2 _ H3). Qed. (* Corollaries ... *)f, g:R -> Ra, b:Rpr1:forall c0 : R, a < c0 < b -> derivable_pt f c0pr2:forall c0 : R, a < c0 < b -> derivable_pt g c0H:a < bH0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt g c0H2:a <= bh:=fun y : R => (g b - g a) * f y - (f b - f a) * g y:R -> Rc:RH3:a < c < bderivable_pt g cforall (f : R -> R) (a b : R) (pr : derivable f), a < b -> exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bforall (f : R -> R) (a b : R) (pr : derivable f), a < b -> exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c : R, a < c < b -> derivable_pt f cexists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c : R, a < c < b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt id cexists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c : R, a < c < b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt id cH0:forall c : R, a <= c <= b -> continuity_pt f cexists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c : R, a < c < b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt id cH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt id cexists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c : R, a < c < b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt id cH0:forall c : R, a <= c <= b -> continuity_pt f cH1:forall c : R, a <= c <= b -> continuity_pt id cH2:exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)exists c : R, f b - f a = derive_pt f c (pr c) * (b - a) /\ a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)exists c0 : R, f b - f a = derive_pt f c0 (pr c0) * (b - a) /\ a < c0 < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)f b - f a = derive_pt f c (pr c) * (b - a)f:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)a < c < bf:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)H5:derive_pt id c (X0 c P) = derive_pt id c (derivable_pt_id c)f b - f a = derive_pt f c (pr c) * (b - a)f:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)a < c < bapply P. Qed.f:R -> Ra, b:Rpr:derivable fH:a < bX:forall c0 : R, a < c0 < b -> derivable_pt f c0X0:forall c0 : R, a < c0 < b -> derivable_pt id c0H0:forall c0 : R, a <= c0 <= b -> continuity_pt f c0H1:forall c0 : R, a <= c0 <= b -> continuity_pt id c0c:RP:a < c < bH4:(id b - id a) * derive_pt f c (X c P) = (f b - f a) * derive_pt id c (X0 c P)a < c < bforall (f f' : R -> R) (a b : R), a < b -> (forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bforall (f f' : R -> R) (a b : R), a < b -> (forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)(forall c : R, a <= c <= b -> derivable_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f c(forall c : R, a < c < b -> derivable_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f c(forall c : R, a <= c <= b -> continuity_pt f c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f c(forall c : R, a <= c <= b -> derivable_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id c(forall c : R, a < c < b -> derivable_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id c(forall c : R, a <= c <= b -> continuity_pt id c) -> exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)exists c : R, f b - f a = f' c * (b - a) /\ a < c < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)f b - f a = f' x * (b - a)f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt id x (X2 x P) = 1 -> f b - f a = f' x * (b - a)f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt id x (X2 x P) = 1f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt f x (X0 x P) = f' x -> derive_pt id x (X2 x P) = 1 -> f b - f a = f' x * (b - a)f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt f x (X0 x P) = f' xf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt id x (X2 x P) = 1f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt f x (X0 x P) = f' xf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt id x (X2 x P) = 1f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)derive_pt id x (X2 x P) = 1f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cH2:forall c : R, a <= c <= b -> continuity_pt id cx:RP:a < x < bH3:(id b - id a) * derive_pt f x (X0 x P) = (f b - f a) * derive_pt id x (X2 x P)a < x < bf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cX2:forall c : R, a < c < b -> derivable_pt id cforall c : R, a <= c <= b -> continuity_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cX1:forall c : R, a <= c <= b -> derivable_pt id cforall c : R, a < c < b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cH1:forall c : R, a <= c <= b -> continuity_pt f cforall c : R, a <= c <= b -> derivable_pt id cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cX0:forall c : R, a < c < b -> derivable_pt f cforall c : R, a <= c <= b -> continuity_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)X:forall c : R, a <= c <= b -> derivable_pt f cforall c : R, a < c < b -> derivable_pt f cf, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cintros; unfold derivable_pt; exists (f' c); apply H0; apply H1. Qed.f, f':R -> Ra, b:RH:a < bH0:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)forall c : R, a <= c <= b -> derivable_pt f cforall (f f' : R -> R) (a b : R), a < b -> (forall x : R, a <= x -> x <= b -> derivable_pt_lim f x (f' x)) -> exists c : R, a <= c /\ c <= b /\ f b = f a + f' c * (b - a)intros f f' a b H H0; assert (H1 : exists c : R, f b - f a = f' c * (b - a) /\ a < c < b); [ apply MVT_cor2; [ apply H | intros; elim H1; intros; apply (H0 _ H2 H3) ] | elim H1; intros; exists x; elim H2; intros; elim H4; intros; split; [ left; assumption | split; [ left; assumption | rewrite <- H3; ring ] ] ]. Qed.forall (f f' : R -> R) (a b : R), a < b -> (forall x : R, a <= x -> x <= b -> derivable_pt_lim f x (f' x)) -> exists c : R, a <= c /\ c <= b /\ f b = f a + f' c * (b - a)forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> a < b -> f a = f b -> exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> a < b -> f a = f b -> exists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bforall x : R, a < x < b -> derivable_pt id xf:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xexists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xexists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)forall x : R, a <= x <= b -> continuity_pt id xf:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)H4:forall x : R, a <= x <= b -> continuity_pt id xexists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c : R, a <= c <= b -> continuity_pt id c) -> exists (c : R) (P : a < c < b), (id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)H4:forall x : R, a <= x <= b -> continuity_pt id xexists (c : R) (P : a < c < b), derive_pt f c (pr c P) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)H4:forall x : R, a <= x <= b -> continuity_pt id xc:RP:a < c < bH6:(id b - id a) * derive_pt f c (pr c P) = (f b - f a) * derive_pt id c (H2 c P)exists (c0 : R) (P0 : a < c0 < b), derive_pt f c0 (pr c0 P0) = 0f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)H4:forall x : R, a <= x <= b -> continuity_pt id xc:RP:a < c < bH6:(id b - id a) * derive_pt f c (pr c P) = (f b - f b) * derive_pt id c (H2 c P)derive_pt f c (pr c P) = 0rewrite Rmult_0_l in H6; apply Rmult_eq_reg_l with (b - a); [ rewrite Rmult_0_r; apply H6 | apply Rminus_eq_contra; red; intro H7; rewrite H7 in H0; elim (Rlt_irrefl _ H0) ]. Qed. (**********)f:R -> Ra, b:Rpr:forall x : R, a < x < b -> derivable_pt f xH:forall x : R, a <= x <= b -> continuity_pt f xH0:a < bH1:f a = f bH2:forall x : R, a < x < b -> derivable_pt id xH3:(forall c0 : R, a <= c0 <= b -> continuity_pt id c0) -> exists (c0 : R) (P0 : a < c0 < b), (id b - id a) * derive_pt f c0 (pr c0 P0) = (f b - f a) * derive_pt id c0 (H2 c0 P0)H4:forall x : R, a <= x <= b -> continuity_pt id xc:RP:a < c < bH6:(b + - a) * derive_pt f c (pr c P) = 0 * derive_pt (fun x : R => x) c (H2 c P)derive_pt f c (pr c P) = 0forall (f : R -> R) (pr : derivable f), (forall x : R, 0 <= derive_pt f x (pr x)) -> increasing fforall (f : R -> R) (pr : derivable f), (forall x : R, 0 <= derive_pt f x (pr x)) -> increasing ff:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)increasing ff:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)forall x y : R, x <= y -> f x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yf x <= f yf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < y- f x + f x <= - f x + f yf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < y0 <= f y + - f xf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y - f x = derive_pt f c (pr c) * (y - x)H4:x < c < y0 <= f y + - f xf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < y0 <= f y + - f xf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < y0 <= derive_pt f c (pr c) * (y + - x)f:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < y0 <= derive_pt f c (pr c)f:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < y0 <= y + - xf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < y0 <= y + - xf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x < yc:RH3:f y + - f x = derive_pt f c (pr c) * (y + - x)H4:x < c < yx + 0 <= x + (y + - x)f:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yf:R -> Rpr:derivable fH:forall x : R, 0 <= derive_pt f x (pr x)y:RH0:y <= yf y <= f yf:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yelim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H0 H1)). Qed. (**********)f:R -> Rpr:derivable fH:forall x0 : R, 0 <= derive_pt f x0 (pr x0)x, y:RH0:x <= yH1:x > yf x <= f yforall (f : R -> R) (pr : derivable f), decreasing f -> forall x : R, derive_pt f x (pr x) <= 0forall (f : R -> R) (pr : derivable f), decreasing f -> forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lderive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l < 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l = 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0 -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l) -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l < l / 2 + - l -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - l < - (l / 2) -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2) -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)- - ((f (x + delta / 2) + - f x) / (delta / 2)) > - - (l / 2) -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)(f (x + delta / 2) + - f x) / (delta / 2) > l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)H16:(f (x + delta / 2) + - f x) / (delta / 2) > l / 2l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2H15:- ((f (x + delta / 2) + - f x) / (delta / 2)) < - (l / 2)H16:(f (x + delta / 2) + - f x) / (delta / 2) > l / 2H17:0 < (f (x + delta / 2) - f x) / (delta / 2)l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- ((f (x + delta / 2) + - f x) / (delta / 2)) = - ((f (x + delta / 2) + - f x) / (delta / 2) + - l) + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0H14:- ((f (x + delta / 2) - f x) / (delta / 2) - l) < l / 2- (l / 2) = l / 2 + - (l / 2 + l / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= - 0 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= 0 -> l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0H13:0 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H14:(f (x + delta / 2) - f x) / (delta / 2) - l < l / 2H15:- ((f (x + delta / 2) - f x) / (delta / 2) - l) <= 0l <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < (f x - f (x + delta / 2)) / (delta / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < (f x + - f (x + delta / 2)) / (delta / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= (f x + - f (x + delta / 2)) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= f x + - f (x + delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0x <= x + delta * / 2 -> 0 <= f x + - f (x + delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0x <= x + delta * / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0x <= x + delta * / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 00 < lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) - f x) / (delta / 2) - l)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x - f (x + delta / 2)) / (delta / 2) + l = l - (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta / 2)) / (delta / 2) + l = l + - ((f (x + delta / 2) + - f x) / (delta / 2))f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta / 2)) / (delta / 2) + l = - ((f (x + delta / 2) + - f x) / (delta / 2)) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = - ((f (x + delta * / 2) + - f x) * / (delta * / 2)) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = - (f (x + delta * / 2) + - f x) * / (delta * / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = (- f (x + delta * / 2) + - - f x) * / (delta * / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(f x + - f (x + delta * / 2)) * / (delta * / 2) + l = (- f (x + delta * / 2) + f x) * / (delta * / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:(f (x + delta / 2) - f x) / (delta / 2) <= 0(- f (x + delta * / 2) + f x) * / (delta * / 2) + l = (- f (x + delta * / 2) + f x) * / (delta * / 2) + lf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta / 2) - f x) / (delta / 2) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) <= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) <= - 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f x - f (x + delta / 2)) / (delta / 2) >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= (f x - f (x + delta / 2)) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= f x - f (x + delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltax <= x + delta * / 2 -> 0 <= f x - f (x + delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltax <= x + delta * / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltaH10:x <= x + delta * / 2H13:f (x + delta * / 2) <= f x0 <= f x - f (x + delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltax <= x + delta * / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < deltax <= x + delta * / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- ((f x - f (x + delta / 2)) / (delta / 2)) = (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta- (f x - f (x + delta * / 2)) * / (delta * / 2) = (f (x + delta * / 2) - f x) * / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2H8:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH9:delta / 2 <> 0H11:0 < delta / 2H12:Rabs (delta / 2) < delta(f (x + delta * / 2) - f x) * / (delta * / 2) = (f (x + delta * / 2) - f x) * / (delta * / 2)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2/ 2 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2/ 2 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < delta / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 22 * (delta * / 2) < 2 * deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 22 * (delta * / 2) < 2 * deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 21 * delta < 2 * deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 22 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta + 0 < delta + deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 22 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 22 <> 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 2delta / 2 >= 0f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < deltaf:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < l / 20 < / 2f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2unfold Rdiv; apply Rmult_lt_0_compat; [ apply H4 | apply Rinv_0_lt_compat; prove_sup0 ]. Qed. (**********)f:R -> Rpr:derivable fH:decreasing fx:RH0:forall x0 y : R, x0 <= y -> f y <= f x0H1:exists l0 : R, derive_pt f x (pr x) = l0l:RH2:derive_pt f x (pr x) = lH3:l = 0 \/ l > 0H4:l > 0H5:derivable_pt_lim f x l0 < l / 2forall f : R -> R, increasing f -> decreasing (- f)%Funfold increasing, decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_ge_le_contravar; apply Rle_ge; assumption. Qed. (**********)forall f : R -> R, increasing f -> decreasing (- f)%Fforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) <= 0) -> decreasing fforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) <= 0) -> decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0(forall h : R, - - f h = f h) -> decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0H0:forall h : R, - - f h = f hdecreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0H0:forall h : R, - - f h = f h(increasing (- f)%F -> decreasing (- - f)%F) -> decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0H0:forall h : R, - - f h = f h(increasing (- f)%F -> forall x y : R, x <= y -> (- - f)%F y <= (- - f)%F x) -> forall x y : R, x <= y -> f y <= f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0H0:forall h : R, - - f h = f h(increasing (fun x : R => - f x) -> forall x y : R, x <= y -> - - f y <= - - f x) -> forall x y : R, x <= y -> f y <= f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yf y <= f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= y- - f y <= - - f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yincreasing (fun x0 : R => - f x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= y(forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)) -> increasing (fun x0 : R => - f x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yforall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yH3:forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)increasing (fun x0 : R => - f x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yforall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yH3:forall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)increasing (- f)%Ff:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yforall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yforall x0 : R, 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:R0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0) -> 0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)0 <= derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)0 <= derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0))f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)0 <= - derive_pt f x0 (pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 <= y0 -> - - f y0 <= - - f x1x, y:RH2:x <= yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) <= 0H0:forall h : R, - - f h = f hH1:increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 <= y0 -> - - f y0 <= - - f x0x, y:RH2:x <= yx <= yf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hintro; ring. Qed. (**********)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) <= 0forall h : R, - - f h = f hforall (f : R -> R) (pr : derivable f), (forall x : R, 0 < derive_pt f x (pr x)) -> strict_increasing fforall (f : R -> R) (pr : derivable f), (forall x : R, 0 < derive_pt f x (pr x)) -> strict_increasing ff:R -> Rpr:derivable fH:forall x : R, 0 < derive_pt f x (pr x)strict_increasing ff:R -> Rpr:derivable fH:forall x : R, 0 < derive_pt f x (pr x)forall x y : R, x < y -> f x < f yf:R -> Rpr:derivable fH:forall x0 : R, 0 < derive_pt f x0 (pr x0)x, y:RH0:x < yf x < f yf:R -> Rpr:derivable fH:forall x0 : R, 0 < derive_pt f x0 (pr x0)x, y:RH0:x < y- f x + f x < - f x + f yf:R -> Rpr:derivable fH:forall x0 : R, 0 < derive_pt f x0 (pr x0)x, y:RH0:x < y0 < f y + - f xf:R -> Rpr:derivable fH:forall x0 : R, 0 < derive_pt f x0 (pr x0)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y0 < f y + - f xf:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y0 < f y + - f xf:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y - f x = derive_pt f x0 (pr x0) * (y - x)H4:x < x0 < y0 < f y + - f xf:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < y0 < f y + - f xf:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < y0 < derive_pt f x0 (pr x0) * (y + - x)f:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < y0 < derive_pt f x0 (pr x0)f:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < y0 < y + - xf:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < y0 < y + - xrewrite Rplus_0_r; replace (x + (y + - x)) with y; [ assumption | ring ]. Qed. (**********)f:R -> Rpr:derivable fH:forall x1 : R, 0 < derive_pt f x1 (pr x1)x, y:RH0:x < yH1:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH2:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH3:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H4:x < x0 < yx + 0 < x + (y + - x)forall f : R -> R, strict_increasing f -> strict_decreasing (- f)%Funfold strict_increasing, strict_decreasing, opp_fct; intros; generalize (H x y H0); intro; apply Ropp_lt_gt_contravar; assumption. Qed. (**********)forall f : R -> R, strict_increasing f -> strict_decreasing (- f)%Fforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) < 0) -> strict_decreasing fforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) < 0) -> strict_decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0strict_decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0(forall h : R, - - f h = f h) -> strict_decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0H0:forall h : R, - - f h = f hstrict_decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0H0:forall h : R, - - f h = f h(strict_increasing (- f)%F -> strict_decreasing (- - f)%F) -> strict_decreasing ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0H0:forall h : R, - - f h = f h(strict_increasing (fun x : R => - f x) -> forall x y : R, x < y -> - - f y < - - f x) -> forall x y : R, x < y -> f y < f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < yf y < f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < yf y < - - f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < y- - f y < - - f xf:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < ystrict_increasing (fun x0 : R => - f x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < y(forall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)) -> strict_increasing (fun x0 : R => - f x0)f:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < yforall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x0 : R, derive_pt f x0 (pr x0) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x0 : R => - f x0) -> forall x0 y0 : R, x0 < y0 -> - - f y0 < - - f x0x, y:RH2:x < yforall x0 : R, 0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:R0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0) -> 0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)0 < derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)H4:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)0 < - derive_pt f x0 (pr x0)f:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hf:R -> Rpr:derivable fH:forall x1 : R, derive_pt f x1 (pr x1) < 0H0:forall h : R, - - f h = f hH1:strict_increasing (fun x1 : R => - f x1) -> forall x1 y0 : R, x1 < y0 -> - - f y0 < - - f x1x, y:RH2:x < yx0:RH3:derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = - derive_pt f x0 (pr x0)derive_pt (- f) x0 (derivable_pt_opp f x0 (pr x0)) = derive_pt (- f) x0 (derivable_opp f pr x0)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hintro; ring. Qed. (**********)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) < 0forall h : R, - - f h = f hforall (f : R -> R) (pr : derivable f), constant f -> forall x : R, derive_pt f x (pr x) = 0forall (f : R -> R) (pr : derivable f), constant f -> forall x : R, derive_pt f x (pr x) = 0f:R -> Rpr:derivable fH:constant fx:Rderive_pt f x (pr x) = 0f:R -> Rpr:derivable fH:forall x0 y : R, f x0 = f yx:Rderive_pt f x (pr x) = 0f:R -> Rpr:derivable fH:forall x0 y : R, f x0 = f yx:Rderivable_pt_lim f x 0rewrite (H x (x + h)); unfold Rminus; unfold Rdiv; rewrite Rplus_opp_r; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed. (**********)f:R -> Rpr:derivable fH:forall x0 y : R, f x0 = f yx, eps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < 1Rabs ((f (x + h) - f x) / h - 0) < epsforall f : R -> R, increasing f -> decreasing f -> constant fforall f : R -> R, increasing f -> decreasing f -> constant ff:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x < yf x = f yf:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x = y \/ x > yf x = f yf:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x = y \/ x > yf x = f yf:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x = y \/ x > yH2:x = yf x = f yf:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x = y \/ x > yH2:x > yf x = f ygeneralize (Rlt_le y x H2); intro; symmetry ; apply (Rle_antisym (f y) (f x) (H y x H3) (H0 y x H3)). Qed. (**********)f:R -> RH:forall x0 y0 : R, x0 <= y0 -> f x0 <= f y0H0:forall x0 y0 : R, x0 <= y0 -> f y0 <= f x0x, y:RH1:x = y \/ x > yH2:x > yf x = f yforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) = 0) -> constant fforall (f : R -> R) (pr : derivable f), (forall x : R, derive_pt f x (pr x) = 0) -> constant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0constant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0(forall x : R, derive_pt f x (pr x) <= 0) -> constant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0(forall x : R, 0 <= derive_pt f x (pr x)) -> (forall x : R, derive_pt f x (pr x) <= 0) -> constant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0H0:forall x : R, 0 <= derive_pt f x (pr x)H1:forall x : R, derive_pt f x (pr x) <= 0constant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0H0:forall x : R, 0 <= derive_pt f x (pr x)H1:forall x : R, derive_pt f x (pr x) <= 0H2:increasing fconstant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0H0:forall x : R, 0 <= derive_pt f x (pr x)H1:forall x : R, derive_pt f x (pr x) <= 0H2:increasing fH3:decreasing fconstant ff:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0intro; right; apply (H x). Qed. (**********)f:R -> Rpr:derivable fH:forall x : R, derive_pt f x (pr x) = 0forall x : R, derive_pt f x (pr x) <= 0forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> ((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> ((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)a, b:Rf:R -> Rpr:derivable fH:a < b((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f y) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f y)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x < f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < y- f x + f x < - f x + f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < y0 < f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y0 < f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y0 < f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y - f x = derive_pt f x0 (pr x0) * (y - x)H7:x < x0 < y0 < f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < derive_pt f x0 (pr x0) * (y + - x)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < derive_pt f x0 (pr x0)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < ya < x0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < ya < x0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < ya < x0a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yH10:a <= xH11:x <= ba < x0a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yH10:a <= yH11:y <= bx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 < y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yx + 0 < x + (y + - x)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x <= f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < y- f x + f x <= - f x + f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < y0 <= f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < y0 <= f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < y0 <= f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y - f x = derive_pt f x0 (pr x0) * (y - x)H7:x < x0 < y0 <= f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= f y + - f xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= derive_pt f x0 (pr x0) * (y + - x)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= derive_pt f x0 (pr x0)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < ya < x0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < ya < x0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < ya < x0a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yH10:a <= xH11:x <= ba < x0a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yH8:x < x0H9:x0 < yH10:a <= yH11:y <= bx0 < ba, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xa, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < y0 <= y + - xrewrite Rplus_0_r; replace (x + (y + - x)) with y; [ left; assumption | ring ]. Qed. (**********)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:exists c : R, f y - f x = derive_pt f c (pr c) * (y - x) /\ x < c < yx0:RH5:f y - f x = derive_pt f x0 (pr x0) * (y - x) /\ x < x0 < yH6:f y + - f x = derive_pt f x0 (pr x0) * (y + - x)H7:x < x0 < yx + 0 <= x + (y + - x)forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f yforall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x < f ya, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yf x < f yelim H4; intros H5 _; apply (H5 H0 x y H1 H2 H3). Qed. (**********)a, b:Rf:R -> Rpr:derivable fH:a < bH0:forall t : R, a < t < b -> 0 < derive_pt f t (pr t)x, y:RH1:a <= x <= bH2:a <= y <= bH3:x < yH4:((forall t : R, a < t < b -> 0 < derive_pt f t (pr t)) -> forall x0 y0 : R, a <= x0 <= b -> a <= y0 <= b -> x0 < y0 -> f x0 < f y0) /\ ((forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x0 y0 : R, a <= x0 <= b -> a <= y0 <= b -> x0 < y0 -> f x0 <= f y0)f x < f yforall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f yintros a b f pr H H0 x y H1 H2 H3; generalize (derive_increasing_interv_ax a b f pr H); intro; elim H4; intros _ H5; apply (H5 H0 x y H1 H2 H3). Qed. (**********) (**********)forall (a b : R) (f : R -> R) (pr : derivable f), a < b -> (forall t : R, a < t < b -> 0 <= derive_pt f t (pr t)) -> forall x y : R, a <= x <= b -> a <= y <= b -> x < y -> f x <= f yforall (f : R -> R) (a b k : R) (pr : derivable f), a <= b -> (forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k) -> f b - f a <= k * (b - a)forall (f : R -> R) (a b k : R) (pr : derivable f), a <= b -> (forall c : R, a <= c <= b -> derive_pt f c (pr c) <= k) -> f b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a < bf b - f a <= k * (b - a)f:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < bderive_pt f c (pr c) * (b - a) <= k * (b - a)f:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < b(b - a) * derive_pt f c (pr c) <= (b - a) * kf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < b0 <= b - af:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < bderive_pt f c (pr c) <= kf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < ba <= a + (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < bderive_pt f c (pr c) <= kf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < bderive_pt f c (pr c) <= kf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < ba <= c <= bf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt f c0 (pr c0) <= kH1:a < bc:RH4:a < c < bH2:a < cH3:c < ba <= c <= bf:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= bf b - f b <= k * (b - b)f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)f:R -> Rb, k:Rpr:derivable fH0:forall c : R, b <= c <= b -> derive_pt f c (pr c) <= kH:b <= b0 <= k * 0f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ H H1)). Qed.f:R -> Ra, b, k:Rpr:derivable fH:a <= bH0:forall c : R, a <= c <= b -> derive_pt f c (pr c) <= kH1:a > bf b - f a <= k * (b - a)forall (f g : R -> R) (a b : R) (pr1 : derivable f) (pr2 : derivable g), a <= b -> (forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)) -> g b - g a <= f b - f aforall (f g : R -> R) (a b : R) (pr1 : derivable f) (pr2 : derivable g), a <= b -> (forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)) -> g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f) -> g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)(forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0) -> g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0H2:(g - f)%F b - (g - f)%F a <= 0 * (b - a)g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0H2:g b - f b - (g a - f a) <= 0g b - g a <= f b - f af, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0H2:g b - f b - (g a - f a) <= 0- f b + f a + (g b - g a) <= - f b + f a + (f b - f a)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)H1:forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0H2:g b - f b - (g a - f a) <= 0- f b + f a + (g b - g a) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)X:derivable (g - f)forall c : R, a <= c <= b -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c)) -> derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt (g - f) c (X c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c)) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt g c (pr2 c) - derive_pt f c (pr1 c) <= 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt f c (pr1 c) + (derive_pt g c (pr2 c) - derive_pt f c (pr1 c)) <= derive_pt f c (pr1 c) + 0f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt f c (pr1 c) + (derive_pt g c (pr2 c) - derive_pt f c (pr1 c)) <= derive_pt f c (pr1 c)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bH2:derive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c0 : R, a <= c0 <= b -> derive_pt g c0 (pr2 c0) <= derive_pt f c0 (pr1 c0)X:derivable (g - f)c:RH1:a <= c <= bderive_pt (g - f) c (X c) = derive_pt (g - f) c (derivable_pt_minus g f c (pr2 c) (pr1 c))f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)apply derivable_minus; assumption. Qed. (* If f has a null derivative in ]a,b[ and is continue in [a,b], *) (* then f is constant on [a,b] *)f, g:R -> Ra, b:Rpr1:derivable fpr2:derivable gH:a <= bH0:forall c : R, a <= c <= b -> derive_pt g c (pr2 c) <= derive_pt f c (pr1 c)derivable (g - f)forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> (forall (x : R) (P : a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x : R => a <= x <= b) (f a)forall (f : R -> R) (a b : R) (pr : forall x : R, a < x < b -> derivable_pt f x), (forall x : R, a <= x <= b -> continuity_pt f x) -> (forall (x : R) (P : a < x < b), derive_pt f x (pr x P) = 0) -> constant_D_eq f (fun x : R => a <= x <= b) (f a)f:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bforall y : R, a < y < x -> derivable_pt id yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yforall y : R, a <= y <= x -> continuity_pt id yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yforall y : R, a < y < x -> derivable_pt f yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0y:RH4:a < y < xH5:a < yH6:y < xa < yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0y:RH4:a < y < xH5:a < yH6:y < xy < bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0y:RH4:a < y < xH5:a < yH6:y < xy < bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yforall y : R, a <= y <= x -> continuity_pt f yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0H4:forall y0 : R, a < y0 < x -> derivable_pt f y0y:RH5:a <= y <= xH6:a <= yH7:y <= xa <= yf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0H4:forall y0 : R, a < y0 < x -> derivable_pt f y0y:RH5:a <= y <= xH6:a <= yH7:y <= xy <= bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y0 : R, a < y0 < x -> derivable_pt id y0H3:forall y0 : R, a <= y0 <= x -> continuity_pt id y0H4:forall y0 : R, a < y0 < x -> derivable_pt f y0y:RH5:a <= y <= xH6:a <= yH7:y <= xy <= bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xH7:exists (c : R) (P : a < c < x), (id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)a < c < bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)a < cf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)c < bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)c < bf:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bderive_pt f c (H4 c P) = 0f:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bH11:derive_pt f c (H4 c P) = 0f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bH11:derive_pt f c (H4 c P) = 0f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bH11:derive_pt f c (H4 c P) = 0derive_pt id c (H2 c P) = 1f:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bH11:derive_pt f c (H4 c P) = 0H12:derive_pt id c (H2 c P) = 1f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P0 : a < x0 < b), derive_pt f x0 (pr x0 P0) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a < xc:RP:a < c < xH9:(id x - id a) * derive_pt f c (H4 c P) = (f x - f a) * derive_pt id c (H2 c P)H10:a < c < bH11:derive_pt f c (H4 c P) = 0H12:derive_pt id c (H2 c P) = 1f x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RHlt:a < bH2:forall y : R, a < y < x -> derivable_pt id yH3:forall y : R, a <= y <= x -> continuity_pt id yH4:forall y : R, a < y < x -> derivable_pt f yH5:forall y : R, a <= y <= x -> continuity_pt f yH6:x <= bH1:a = xf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bx = af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bH2:x = af x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHeq:a = bH2:x = af x = f af:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f aelim H1; intros; elim (Rlt_irrefl _ (Rle_lt_trans _ _ _ (Rle_trans _ _ _ H2 H3) Hgt)). Qed. (* Unicity of the antiderivative *)f:R -> Ra, b:Rpr:forall x0 : R, a < x0 < b -> derivable_pt f x0H:forall x0 : R, a <= x0 <= b -> continuity_pt f x0H0:forall (x0 : R) (P : a < x0 < b), derive_pt f x0 (pr x0 P) = 0x:RH1:a <= x <= bHgt:a > bf x = f aforall (f g1 g2 : R -> R) (a b : R), antiderivative f g1 a b -> antiderivative f g2 a b -> exists c : R, forall x : R, a <= x <= b -> g1 x = g2 x + cforall (f g1 g2 : R -> R) (a b : R), antiderivative f g1 a b -> antiderivative f g2 a b -> exists c : R, forall x : R, a <= x <= b -> g1 x = g2 x + cf, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bforall x0 : R, a <= x0 <= b -> derivable_pt g1 x0f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 prH1:a <= bH0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 prx:RH2:a <= x <= bH3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1x0:RP:a < x0 < bH7:a < x0H8:x0 < bderivable_pt_lim (g1 - g2) x0 (f x0 - f x0)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 prH1:a <= bH0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 prx:RH2:a <= x <= bH3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1x0:RP:a < x0 < bH7:a < x0H8:x0 < ba <= x0 <= bf, g1, g2:R -> Ra, b:RH:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 prH1:a <= bH0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 prx:RH2:a <= x <= bH3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1x0:RP:a < x0 < bH7:a < x0H8:x0 < bH9:a <= x0 <= bderivable_pt_lim (g1 - g2) x0 (f x0 - f x0)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0g1 x = g2 x + (g1 a - g2 a)f, g1, g2:R -> Ra, b:RH:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g1 x1, f x1 = derive_pt g1 x1 prH1:a <= bH0:forall x1 : R, a <= x1 <= b -> exists pr : derivable_pt g2 x1, f x1 = derive_pt g2 x1 prx:RH2:a <= x <= bH3:forall x1 : R, a <= x1 <= b -> derivable_pt g1 x1H4:forall x1 : R, a <= x1 <= b -> derivable_pt g2 x1H5:forall x1 : R, a < x1 < b -> derivable_pt (g1 - g2) x1H6:forall x1 : R, a <= x1 <= b -> continuity_pt (g1 - g2) x1x0:RP:a < x0 < bH7:a < x0H8:x0 < bH9:a <= x0 <= bderivable_pt_lim (g1 - g2) x0 (f x0 - f x0)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0g1 x = g2 x + (g1 a - g2 a)assert (H8 := null_derivative_loc (g1 - g2)%F a b H5 H6 H7); unfold constant_D_eq in H8; assert (H9 := H8 _ H2); unfold minus_fct in H9; rewrite <- H9; ring. Qed. (* A variant of MVT using absolute values. *)f, g1, g2:R -> Ra, b:RH:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g1 x0, f x0 = derive_pt g1 x0 prH1:a <= bH0:forall x0 : R, a <= x0 <= b -> exists pr : derivable_pt g2 x0, f x0 = derive_pt g2 x0 prx:RH2:a <= x <= bH3:forall x0 : R, a <= x0 <= b -> derivable_pt g1 x0H4:forall x0 : R, a <= x0 <= b -> derivable_pt g2 x0H5:forall x0 : R, a < x0 < b -> derivable_pt (g1 - g2) x0H6:forall x0 : R, a <= x0 <= b -> continuity_pt (g1 - g2) x0H7:forall (x0 : R) (P : a < x0 < b), derive_pt (g1 - g2) x0 (H5 x0 P) = 0g1 x = g2 x + (g1 a - g2 a)forall (f f' : R -> R) (a b : R), (forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bforall (f f' : R -> R) (a b : R), (forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:R(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= bab:a = b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= bab:a = bRabs (f b + - f a) = Rabs (f' a) * Rabs (b + - a)f, f':R -> Ra, b:Raleb:a <= bab:a = bRmin a b <= a <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= bab:a = bRmin a b <= a <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> bderv:forall c : R, a <= c <= b -> derivable_pt_lim f c (f' c)exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ a <= c <= bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Raleb:a <= banb:a <> bderv:forall c0 : R, a <= c0 <= b -> derivable_pt_lim f c0 (f' c0)c:Rhc:f b - f a = f' c * (b - a)intc:a < c < bexists c0 : R, Rabs (f b - f a) = Rabs (f' c0) * Rabs (b - a) /\ a <= c0 <= bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= b(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= bH:b < a(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= bH:b < aH0:b <= a(forall c : R, Rmin a b <= c <= Rmax a b -> derivable_pt_lim f c (f' c)) -> exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ Rmin a b <= c <= Rmax a bf, f':R -> Ra, b:Rblta:~ a <= bH:b < aH0:b <= aderv:forall c : R, b <= c <= a -> derivable_pt_lim f c (f' c)exists c : R, Rabs (f b - f a) = Rabs (f' c) * Rabs (b - a) /\ b <= c <= af, f':R -> Ra, b:Rblta:~ a <= bH:b < aH0:b <= aderv:forall c0 : R, b <= c0 <= a -> derivable_pt_lim f c0 (f' c0)c:Rhc:f a - f b = f' c * (a - b)intc:b < c < aexists c0 : R, Rabs (f b - f a) = Rabs (f' c0) * Rabs (b - a) /\ b <= c0 <= asplit;[now rewrite <- (Rabs_Ropp (b - a)), Ropp_minus_distr| unfold Rle; tauto]. Qed.f, f':R -> Ra, b:Rblta:~ a <= bH:b < aH0:b <= aderv:forall c0 : R, b <= c0 <= a -> derivable_pt_lim f c0 (f' c0)c:Rhc:f a - f b = f' c * (a - b)intc:b < c < aRabs (f' c) * Rabs (a - b) = Rabs (f' c) * Rabs (b - a) /\ b <= c <= a