Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Ranalysis1. Require Import MVT. Require Import Max. Require Import Even. Require Import Lra. Local Open Scope R_scope. (* Boule is French for Ball *) Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r. (* General properties of balls. *)forall (c : R) (d : posreal) (x y z : R), Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d zforall (c : R) (d : posreal) (x y z : R), Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d zunfold Boule in bx, b_y; apply Rabs_def2 in bx; apply Rabs_def2 in b_y; apply Rabs_def1; [apply Rle_lt_trans with (y - c);[apply Rplus_le_compat_r|]| apply Rlt_le_trans with (x - c);[|apply Rplus_le_compat_r]];tauto. Qed.c:Rd:posrealx, y, z:Rbx:Boule c d xb_y:Boule c d yintz:x <= z <= yBoule c d zx, y:Rh:x < y{c : R & {r : posreal | c - r = x /\ c + r = y}}x, y:Rh:x < y{c : R & {r : posreal | c - r = x /\ c + r = y}}x, y:Rh:x < y{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}x, y:Rh:x < y0 < (y - x) / 2x, y:Rh:x < yradius:0 < (y - x) / 2{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}x, y:Rh:x < y0 < y - xx, y:Rh:x < y0 < / 2x, y:Rh:x < yradius:0 < (y - x) / 2{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}x, y:Rh:x < y0 < / 2x, y:Rh:x < yradius:0 < (y - x) / 2{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}x, y:Rh:x < yradius:0 < (y - x) / 2{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}simpl; split; unfold Rdiv; field. Qed.x, y:Rh:x < yradius:0 < (y - x) / 2(x + y) / 2 - {| pos := (y - x) / 2; cond_pos := radius |} = x /\ (x + y) / 2 + {| pos := (y - x) / 2; cond_pos := radius |} = yx, y, z:Rh:x < z < y{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh:x < z < y{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh:x < z < yx * / 2 + z * / 2 < z * / 2 + y * / 2x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh1:x < zh2:z < yx * / 2 + z * / 2 < z * / 2 + y * / 2x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh1:x < zh2:z < y0 < / 2x, y, z:Rh1:x < zh2:z < yx < yx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh1:x < zh2:z < yx < yx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2{c0 : R & {r0 : posreal | Boule c0 r0 z /\ x < c0 - r0 /\ c0 + r0 < y}}x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2{c0 : R & {r0 : posreal | Boule c0 r0 z /\ x < c0 - r0 /\ c0 + r0 < y}}x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2Boule c r zx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2z - c < rx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2- r < z - cx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2z * / 2 + z * / 2 < z * / 2 + y * / 2x, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2- r < z - cx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2- r < z - cx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x * / 2 + z * / 2 < z * / 2 + z * / 2x, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:Rh:x < z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - r /\ c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x < c - rx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2x * / 2 + x * / 2 < x * / 2 + z * / 2x, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2c + r < yx, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2c + r < yapply Rplus_lt_compat_r, Rmult_lt_compat_r;assumption. Qed.x, y, z:RH0:x < zH1:z < ycmp:x * / 2 + z * / 2 < z * / 2 + y * / 2c:Rr:posrealP1:c - r = x * / 2 + z * / 2P2:c + r = z * / 2 + y * / 2H:0 < / 2z * / 2 + y * / 2 < y * / 2 + y * / 2forall (c1 c2 : R) (r1 r2 : posreal) (x : R), Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y : R, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}forall (c1 c2 : R) (r1 r2 : posreal) (x : R), Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y : R, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2Rmax (c1 - r1) (c2 - r2) < xc1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < x{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < x{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xx < Rmin (c1 + r1) (c2 + r2)c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2){r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2){r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x){r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x){r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:Rin1:Rabs (x - c1) < r1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1in2:Rabs (x - c2) < r2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xforall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xforall y : R, Rabs (y - x) < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rh:y - x < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)h':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - xRabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:Rmin (c1 + r1) (c2 + r2) - x > y - xh':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - xRabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > yh':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - xRabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > yh':Rmax (Rmax (c1 - r1) (c2 - r2) - x) (- (Rmin (c1 + r1) (c2 + r2) - x)) < y - xRabs (y - c1) < r1 /\ Rabs (y - c2) < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - xy - c1 < r1c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r1 < y - c1c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - xy - c2 < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r2 < y - c2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r1 < y - c1c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - xy - c2 < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r2 < y - c2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - xy - c2 < r2c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r2 < y - c2apply (fun h => Rplus_lt_reg_l _ _ _ (Rlt_le_trans _ _ _ (proj2 cmp3) h)), Req_le; ring. Qed.c1, c2, r1:Rr1p:0 < r1r2:Rr2p:0 < r2x:RH1:x - c1 < r1H2:- r1 < x - c1H3:x - c2 < r2H4:- r2 < x - c2H:Rmax (c1 - r1) (c2 - r2) < xH0:x < Rmin (c1 + r1) (c2 + r2)t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - xy:Rcmp1:x - Rmax (c1 - r1) (c2 - r2) > y - xcmp2:c1 + r1 > y /\ c2 + r2 > ycmp3:c1 - r1 < y /\ c2 - r2 < ycmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x- r2 < y - c2forall (x : R) (r : posreal), Boule x r xforall (x : R) (r : posreal), Boule x r xrewrite Rabs_pos_eq;[assumption | apply Rle_refl]. Qed.x, r:Rrpos:0 < rRabs 0 < r
Uniform convergence
Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
(r:posreal) : Prop :=
forall eps:R,
0 < eps ->
exists N : nat,
(forall (n:nat) (y:R),
(N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).
Normal convergence
Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type := { An:nat -> R & { l:R | Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\ (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }. Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r. Definition SFL (fn:nat -> R -> R) (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l }) (y:R) : R := let (a,_) := cv y in a.
In a complete space, normal convergence implies uniform convergence
forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> CVU (fun n : nat => SP fn n) (SFL fn cv) 0 rforall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> CVU (fun n : nat => SP fn n) (SFL fn cv) 0 rfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn reps:RH:0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}eps:RH:0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 -> exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nH3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nH3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0N0:natH4:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (SFL fn cv y - SP fn n y) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (SFL fn cv y - SP fn n y) <= Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (SFL fn cv y - SP fn n y) <= s - sum_f_R0 (fun k : nat => Rabs (An k)) nfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yUn_cv (fun n0 : nat => SP fn n0 y) (SFL fn cv y)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yUn_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yx:RUn_cv (fun N : nat => SP fn N y) x -> Un_cv (fun n0 : nat => SP fn n0 y) xfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yUn_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yUn_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1Rabs (fn n0 y) <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1Rabs (fn n0 y) <= An n0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1An n0 >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1An n0 >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n10 <= Rabs (fn n0 y)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1Rabs (fn n0 y) <= An n0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}s:RH0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0N0:natH4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yn0:natH7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) sH8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1Rabs (fn n0 y) <= An n0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ys - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r ysum_f_R0 (fun k : nat => Rabs (An k)) n + 0 <= sum_f_R0 (fun k : nat => Rabs (An k)) n + (s - sum_f_R0 (fun k : nat => Rabs (An k)) n)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yUn_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, 0 <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yforall n0 : nat, 0 <= Rabs (An n0)fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 + - s + 0) < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) sH2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0N0:natH4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 + - s + 0) < epsn:naty:RH5:(N0 <= n)%natH6:Boule 0 r yH7:Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n + - s + 0) < epsRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < epsfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) sH2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An nUn_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps1H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An neps0:RH3:eps0 > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}s:RH0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps1H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An neps0:RH3:eps0 > 0x:natH4:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps1H2:forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0eps0:RH3:eps0 > 0x:natH4:forall n0 : nat, (n0 >= x)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps0n:natH5:(n >= x)%natR_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0rewrite Rminus_0_r; apply H4; assumption. Qed.fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}r:posrealX:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An0 n0)}}eps:RH:0 < epsAn:nat -> RX0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)}s:RH0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps1H2:forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0eps0:RH3:eps0 > 0x:natH4:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) < eps0n:natH5:(n >= x)%natRabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s - 0) < eps0
Each limit of a sequence of functions which converges uniformly is continue
forall (fn : nat -> R -> R) (f : R -> R) (x : R) (r : posreal), CVU fn f x r -> (forall (n : nat) (y : R), Boule x r y -> continuity_pt (fn n) y) -> forall y : R, Boule x r y -> continuity_pt f yforall (fn : nat -> R -> R) (f : R -> R) (x : R) (r : posreal), CVU fn f x r -> (forall (n : nat) (y : R), Boule x r y -> continuity_pt (fn n) y) -> forall y : R, Boule x r y -> continuity_pt f yfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:CVU fn f x rH0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y(exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)) -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rexists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rdel > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rdel > 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rforall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rr0:del1 <= del2del1 > 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps0H0:forall (n0 : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n0) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n0 : nat) (y0 : R), (N0 <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rn:~ del1 <= del2del2 > 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rforall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps0H0:forall (n0 : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n0) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n0 : nat) (y0 : R), (N0 <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rn:~ del1 <= del2del2 > 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rforall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rforall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - f y) <= Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) <= Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - f y) <= Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < eps / 3 + eps / 3 + eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (f x0 - fn N0 x0) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del(N0 <= N0)%natfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delBoule x r x0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delBoule x r x0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (x0 - y) < del1fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:D_x no_cond y x0H11:Rabs (x0 - y) < delRabs (x0 - y) < del1fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:D_x no_cond y x0H11:Rabs (x0 - y) < delRabs (x0 - y) < delfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:D_x no_cond y x0H11:Rabs (x0 - y) < deldel <= del1fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:D_x no_cond y x0H11:Rabs (x0 - y) < deldel <= del1fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3Rabs (fn N0 x0 - fn N0 y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3D_x no_cond y x0 /\ Rabs (x0 - y) < del2fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3D_x no_cond y x0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3Rabs (x0 - y) < del2fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3Rabs (x0 - y) < del2fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3H12:D_x no_cond y x0H13:Rabs (x0 - y) < delRabs (x0 - y) < delfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3H12:D_x no_cond y x0H13:Rabs (x0 - y) < deldel <= del2fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delH10:del2 > 0H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3H12:D_x no_cond y x0H13:Rabs (x0 - y) < deldel <= del2fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delRabs (fn N0 y - f y) < eps / 3fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del(N0 <= N0)%natfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delBoule x r yfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < delBoule x r yfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps / 3 + eps / 3 + eps / 3 = epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 * (eps / 3 + eps / 3 + eps / 3) = 3 * epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < deleps + eps + eps = 3 * epsfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)del1:posrealH7:forall h : R, Rabs h < del1 -> Boule x r (y + h)del2:RH8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)del:=Rmin del1 del2:Rx0:RH9:D_x no_cond y x0 /\ Rabs (x0 - y) < del3 <> 0fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yexists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y) -> exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)forall h : R, Rabs h < {| pos := r - Rabs (x - y); cond_pos := H6 |} -> Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Boule x r (y + h)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs (h + (y - x)) <= Rabs h + Rabs (y - x)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs h + Rabs (y - x) < rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs h + Rabs (y - x) < rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)- Rabs (x - y) + (Rabs h + Rabs (y - x)) < - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)- Rabs (x - y) + (Rabs h + Rabs (x - y)) < - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)- Rabs (x - y) + (Rabs h + Rabs (x - y)) < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)r - Rabs (x - y) = - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs h < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs h = - Rabs (x - y) + (Rabs h + Rabs (x - y))fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)r - Rabs (x - y) = - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)Rabs h = - Rabs (x - y) + (Rabs h + Rabs (x - y))fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)r - Rabs (x - y) = - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yH6:0 < r - Rabs (x - y)h:RH7:Rabs h < r - Rabs (x - y)r - Rabs (x - y) = - Rabs (x - y) + rfn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Boule x r yeps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) y0 < r - Rabs (x - y)rewrite Rplus_0_r; replace (Rabs (y - x) + (r - Rabs (y - x))) with (pos r); [ apply H1 | ring ]. Qed. (**********)fn:nat -> R -> Rf:R -> Rx:Rr:posrealH:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0y:RH1:Rabs (y - x) < reps:RH2:eps > 0H3:0 < eps / 3N0:natH4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3H5:continuity_pt (fn N0) yRabs (y - x) + 0 < Rabs (y - x) + (r - Rabs (y - x))forall (fn : nat -> R -> R) (N : nat) (x : R), (forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xforall (fn : nat -> R -> R) (N : nat) (x : R), (forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xfn:nat -> R -> Rx:RH:forall n : nat, (n <= 0)%nat -> continuity_pt (fn n) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) 0) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) (S N)) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) (S N)) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt ((fun y : R => sum_f_R0 (fun k : nat => fn k y) N) + (fun y : R => fn (S N) y)) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => fn (S N) y) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xforall n : nat, (n <= N)%nat -> continuity_pt (fn n) xfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => fn (S N) y) xfn:nat -> R -> RN:natx:RH:forall n0 : nat, (n0 <= S N)%nat -> continuity_pt (fn n0) xHrecN:(forall n0 : nat, (n0 <= N)%nat -> continuity_pt (fn n0) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xn:natH0:(n <= N)%nat(n <= S N)%natfn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => fn (S N) y) xapply (H (S N)); apply le_n. Qed.fn:nat -> R -> RN:natx:RH:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) xHrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) xcontinuity_pt (fun y : R => fn (S N) y) x
Continuity and normal convergence
forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> (forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> forall y : R, Boule 0 r y -> continuity_pt (SFL fn cv) yforall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> (forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> forall y : R, Boule 0 r y -> continuity_pt (SFL fn cv) yfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yCVU ?fn (SFL fn cv) ?x ?rfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yforall (n : nat) (y0 : R), Boule ?x ?r y0 -> continuity_pt (?fn n) y0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule ?x ?r yfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yCVN_r fn ?rfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yforall (n : nat) (y0 : R), Boule 0 ?r y0 -> continuity_pt ((fun n0 : nat => SP fn n0) n) y0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule 0 ?r yfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yforall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt ((fun n0 : nat => SP fn n0) n) y0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule 0 r yfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n0 : nat) (y1 : R), Boule 0 r y1 -> continuity_pt (fn n0) y1y:RH0:Boule 0 r yn:naty0:RH1:Boule 0 r y0forall n0 : nat, (n0 <= n)%nat -> continuity_pt (fn n0) y0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule 0 r yfn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n1 : nat) (y1 : R), Boule 0 r y1 -> continuity_pt (fn n1) y1y:RH0:Boule 0 r yn:naty0:RH1:Boule 0 r y0n0:natH2:(n0 <= n)%natBoule 0 r y0fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule 0 r yapply H0. Qed.fn:nat -> R -> Rcv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}r:posrealX:CVN_r fn rH:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0y:RH0:Boule 0 r yBoule 0 r yforall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}), CVN_R fn -> (forall n : nat, continuity (fn n)) -> continuity (SFL fn cv)forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}), CVN_R fn -> (forall n : nat, continuity (fn n)) -> continuity (SFL fn cv)fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:Rcontinuity_pt (SFL fn cv) xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1continuity_pt (SFL fn cv) xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x -> continuity_pt (SFL fn cv) xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xCVN_r fn {| pos := Rabs x + 1; cond_pos := H0 |}fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xforall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} y -> continuity_pt (fn n) yfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xBoule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xforall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} y -> continuity_pt (fn n) yfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xBoule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xBoule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xfn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} xunfold Boule; simpl; rewrite Rminus_0_r; pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. Qed.fn:nat -> R -> Rcv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}X:CVN_R fnH:forall n : nat, continuity (fn n)x:RH0:0 < Rabs x + 1Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
As R is complete, normal convergence implies that (fn) is simply-uniformly convergent
forall fn : nat -> R -> R, CVN_R fn -> forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}forall fn : nat -> R -> R, CVN_R fn -> forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}fn:nat -> R -> RX:CVN_R fnx:RCauchy_crit (fun N : nat => SP fn N x)fn:nat -> R -> RX:CVN_R fnx:RAn:=fun N : nat => fn N x:nat -> RCauchy_crit (fun N : nat => sum_f_R0 An N)fn:nat -> R -> RX:CVN_R fnx:RAn:=fun N : nat => fn N x:nat -> RCauchy_crit_series Anfn:nat -> R -> RX:CVN_R fnx:RAn:=fun N : nat => fn N x:nat -> RCauchy_crit_series (fun i : nat => Rabs (An i))fn:nat -> R -> RX:CVN_R fnx:RAn:=fun N : nat => fn N x:nat -> R{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1 -> {l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:CVN_r fn {| pos := Rabs x + 1; cond_pos := H |}{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n){l0 : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Rabs (An n) <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:nat0 <= Rabs (An n)fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:natRabs (An n) <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:natRabs (An n) <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:natRabs x < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nUn_cv (fun N : nat => sum_f_R0 Bn N) lfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n(forall n : nat, 0 <= Bn n) -> Un_cv (fun N : nat => sum_f_R0 Bn N) lfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps0H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nH5:forall n : nat, 0 <= Bn neps:RH6:eps > 0exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 Bn n) l < epsfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps0H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nH5:forall n : nat, 0 <= Bn neps:RH6:eps > 0x0:natH7:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < epsexists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 Bn n) l < epsfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0H5:forall n0 : nat, 0 <= Bn n0eps:RH6:eps > 0x0:natH7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < epsn:natH8:(n >= x0)%natR_dist (sum_f_R0 Bn n) l < epsfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0H5:forall n0 : nat, 0 <= Bn n0eps:RH6:eps > 0x0:natH7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < epsn:natH8:(n >= x0)%natR_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < epsfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0H5:forall n0 : nat, 0 <= Bn n0eps:RH6:eps > 0x0:natH7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < epsn:natH8:(n >= x0)%natsum_f_R0 (fun k : nat => Rabs (Bn k)) n = sum_f_R0 Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0H5:forall n0 : nat, 0 <= Bn n0eps:RH6:eps > 0x0:natH7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < epsn:natH8:(n >= x0)%natsum_f_R0 (fun k : nat => Rabs (Bn k)) n = sum_f_R0 Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}l:RH2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) lH4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn nforall n : nat, 0 <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:nat0 <= Rabs (An n)fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:natRabs (An n) <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> RH:0 < Rabs x + 1H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}Bn:nat -> RH1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}l:RH2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) lH4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0n:natRabs (An n) <= Bn nfn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ]. Qed. (* Uniform convergence implies pointwise simple convergence *)fn:nat -> R -> RX:forall r : posreal, CVN_r fn rx:RAn:=fun N : nat => fn N x:nat -> R0 < Rabs x + 1forall (f : nat -> R -> R) (g : R -> R) (c : R) (d : posreal), CVU f g c d -> forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)forall (f : nat -> R -> R) (g : R -> R) (c : R) (d : posreal), CVU f g c d -> forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)exists N; intros n nN; rewrite R_dist_sym; apply Pn; assumption. Qed. (* convergence is preserved through extensional equality *)f:nat -> R -> Rg:R -> Rc:Rd:posrealcvu:CVU f g c dx:Rbx:Boule c d xeps:Rep:eps > 0N:natPn:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g y - f n y) < epsexists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (f n x) (g x) < epsforall (f : nat -> R -> R) (g1 g2 : R -> R) (c : R) (d : posreal), CVU f g1 c d -> (forall x : R, Boule c d x -> g1 x = g2 x) -> CVU f g2 c dforall (f : nat -> R -> R) (g1 g2 : R -> R) (c : R) (d : posreal), CVU f g1 c d -> (forall x : R, Boule c d x -> g1 x = g2 x) -> CVU f g2 c dexists N; intros; rewrite <- q; auto. Qed. (* When a sequence of derivable functions converge pointwise towards a function g, with the derivatives converging uniformly towards a function g', then the function g' is the derivative of g. *)f:nat -> R -> Rg1, g2:R -> Rc:Rd:posrealcvu:CVU f g1 c dq:forall x : R, Boule c d x -> g1 x = g2 xeps:Rep:0 < epsN:natPn:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g1 y - f n y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (g2 y - f n y) < epsforall (f f' : nat -> R -> R) (g g' : R -> R) (c : R) (d : posreal), CVU f' g' c d -> (forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)) -> (forall (n : nat) (x : R), Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x : R, Boule c d x -> derivable_pt_lim g x (g' x)forall (f f' : nat -> R -> R) (g g' : R -> R) (c : R) (d : posreal), CVU f' g' c d -> (forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)) -> (forall (n : nat) (x : R), Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x : R, Boule c d x -> derivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rforall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zcontinuity_pt (rho_ n) xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (rho_ n x0) (rho_ n x) < eps')f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'exists alp0 : R, alp0 > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp0 -> dist R_met (rho_ n x0) (rho_ n x) < eps')f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (rho_ n x0) (rho_ n x) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpR_dist (if Req_EM_T z' x then f' n x else (f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpabs:z' = xR_dist (f' n x) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpR_dist ((f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpR_dist ((f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpR_dist ((f n z' - f n x) / (z' - x)) (f' n x) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxz:x = zeps':Rep':eps' > 0alp:posrealPa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'z':Base R_metxnz':x <> z'dxz':R_dist z' x < alpR_dist ((f n (x + (z' - x)) - f n x) / (z' - x)) (f' n x) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zcontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y0 < Rmin delta (Rabs (z - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (f n y - f n x) / (y - x) = rho_ n yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xy:y = x(f n y - f n x) / (y - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xny:y <> x(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist x z < Rmin delta (Rabs (z - x))xy:y = x(f n y - f n x) / (y - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xny:y <> x(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist x z < Rmin delta (Rabs (z - x))xy:y = xr:delta <= Rabs (z - x)(f n y - f n x) / (y - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n1 : nat => f n1 x0) (g x0)dff':forall (n1 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n1) x0 (f' n1 x0)x:Rbx:Boule c d xrho_:=fun (n1 : nat) (y0 : R) => if Req_EM_T y0 x then f' n1 x else (f n1 y0 - f n1 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist x z < Rmin delta (Rabs (z - x))xy:y = xn0:~ delta <= Rabs (z - x)(f n y - f n x) / (y - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xny:y <> x(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n1 : nat => f n1 x0) (g x0)dff':forall (n1 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n1) x0 (f' n1 x0)x:Rbx:Boule c d xrho_:=fun (n1 : nat) (y0 : R) => if Req_EM_T y0 x then f' n1 x else (f n1 y0 - f n1 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist x z < Rmin delta (Rabs (z - x))xy:y = xn0:~ delta <= Rabs (z - x)(f n y - f n x) / (y - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xny:y <> x(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0dz:0 < Rmin delta (Rabs (z - x))y:Rdyz:R_dist y z < Rmin delta (Rabs (z - x))xny:y <> x(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n ycontinuity_pt (rho_ n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => (f n z0 - f n x) / (z0 - x)) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => f n z0 - f n x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => z0 - x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))z - x <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (f n) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun _ : R => f n x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => z0 - x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))z - x <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun _ : R => f n x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => z0 - x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))z - x <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))continuity_pt (fun z0 : R => z0 - x) zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))z - x <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))z - x <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rn:natz:Rbz:Boule c d zxnz:x <> zdelta:posrealPd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d ydz:0 < Rmin delta (Rabs (z - x))zx0:z - x = 0x = z - x + xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zCVU rho_ rho c df, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsexists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < eps0 < eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8n, p:natnN:(N <= n)%natpN:(N <= p)%natz:Rbz:Boule c d zRabs (f' n z - f' p z) < eps / 8 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8n, p:natnN:(N <= n)%natpN:(N <= p)%natz:Rbz:Boule c d zRabs (- (f' n z - f' p z)) < eps / 8 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8n, p:natnN:(N <= n)%natpN:(N <= p)%natz:Rbz:Boule c d zRabs (g' z - f' n z - (g' z - f' p z)) < eps / 8 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8n, p:natnN:(N <= n)%natpN:(N <= p)%natz:Rbz:Boule c d zRabs (g' z - f' n z) + Rabs (g' z - f' p z) < eps / 8 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx = x /\ y = y \/ x = y /\ y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:x <= yx <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yRmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy = x /\ x = y \/ y = y /\ x = xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy <= xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy <= xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy <= xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy <= xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yH:~ x <= yy <= xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xRmin x y < Rmax x yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = yx <= y -> x < yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xy <= x -> y < xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xy <= x -> y < xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yRabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yforall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yz:Rintz:Rmin x y <= z <= Rmax x yderivable_pt_lim (f n) z (f' n z)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yz:Rintz:Rmin x y <= z <= Rmax x yderivable_pt_lim (f p) z (f' p z)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x yz:Rintz:Rmin x y <= z <= Rmax x yderivable_pt_lim (f p) z (f' p z)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> ymm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs (f' n z - f' p z) < eps * / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yBoule c d zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:x < z < yx <= z <= yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = xq2:Rmax x y = ymm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs ((f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x y(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRabs (f' n z - f' p z) < eps * / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x y(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yBoule c d zf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x y(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x yRmax x y - Rmin x y <> 0f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x y(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0eps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yq1:Rmin x y = yq2:Rmax x y = xmm:Rmin x y < Rmax x ydm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)z:RPz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)inz:Rmin x y < z < Rmax x y(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 80 < Rmin (Rmin d' d2) delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 80 < deltaf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 80 < / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 80 < / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8 + (eps / 4 + eps / 8)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2y <> y + Rmin (Rmin d' d2) delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (y + Rmin (Rmin d' d2) delta / 2 - y) < d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (Rmin (Rmin d' d2) delta / 2) < d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin (Rmin d' d2) delta / 2 < d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin (Rmin d' d2) delta <= d'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) <= eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist ((f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist ((f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) ((f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Boule c d (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltaBoule c d (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltaBoule c d yf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltaBoule c d (y + delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltay <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltaBoule c d (y + delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltay <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltaBoule x delta (y + delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltay <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltay <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < deltay + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2H:0 < delta0 <= / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (if Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x then f' p x else (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymx:y + Rmin (Rmin d' d2) delta / 2 = x(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = f' p xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (if Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x then f' n x else (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymx:y + Rmin (Rmin d' d2) delta / 2 = x(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = f' n xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (y + Rmin (Rmin d' d2) delta / 2 - y) < d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rabs (Rmin (Rmin d' d2) delta / 2) < d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin (Rmin d' d2) delta / 2 < d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin (Rmin d' d2) delta <= d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin (Rmin d' d2) delta <= Rmin d' d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin d' d2 <= d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxy:x = ydelta:posrealPdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0d':Rdp:d' > 0Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8d2:Rdp2:d2 > 0Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8mmpos:0 < Rmin (Rmin d' d2) delta / 2Rmin d' d2 <= d2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4n, p:natnN:(N <= n)%natpN:(N <= p)%naty:Rb_y:Boule c d yxny:x <> yRabs (rho_ n y - rho_ p y) < eps / 4f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d ye:y = xUn_cv (fun n : nat => f' n x) (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d ye:y = xeps':Rep':eps' > 0N2:natPn2:forall (n : nat) (y0 : R), (N2 <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps'exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (f' n x) (g' x) < eps'f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun i : nat => f i y - f i x) (g y - g x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun _ : nat => / (y - x)) (/ (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun i : nat => f i y) (g y)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun i : nat => f i x) (g x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun _ : nat => / (y - x)) (/ (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun i : nat => f i x) (g x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun _ : nat => / (y - x)) (/ (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)x:Rbx:Boule c d xrho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2y:Rb_y:Boule c d yn:y <> xUn_cv (fun _ : nat => / (y - x)) (/ (y - x))f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yRabs (rho y - rho_ p y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yRabs (rho y - rho_ p y) < eps / 2 + eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2Rabs (rho y - rho_ p y) < eps / 2 + eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2N2:natPn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2Rabs (rho y - rho_ p y) < eps / 2 + eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2N2:natPn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2R_dist (rho y) (rho_ (Nat.max N N2) y) + R_dist (rho_ (Nat.max N N2) y) (rho_ p y) < eps / 2 + eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2N2:natPn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2R_dist (rho y) (rho_ (Nat.max N N2) y) < eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2N2:natPn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2R_dist (rho_ (Nat.max N N2) y) (rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> Rrho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)p:natpN:(N <= p)%naty:Rb_y:Boule c d yep2:0 < eps / 2N2:natPn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2R_dist (rho_ (Nat.max N N2) y) (rho_ p y) <= eps / 2f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zeps:Rep:0 < epsep8:0 < eps / 8N:natPn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < epsexists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c dderivable_pt_lim g x (g' x)f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - g' x) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsexists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - g' x) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}Rabs ((g (x + h) - g x) / h - g' x) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}Rabs (rho (x + h) - g' x) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}Rabs (rho (x + h) - rho x) < epsf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho x = g' xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}x <> x + hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}dist R_met (x + h) x < deltaf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho x = g' xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}dist R_met (x + h) x < deltaf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho x = g' xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho x = g' xf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}rho (x + h) = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}abs:x + h = xg' x = (g (x + h) - g x) / hf, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}(g (x + h) - g x) / (x + h - x) = (g (x + h) - g x) / hreplace (x + h - x) with h by ring; reflexivity. Qed.f, f':nat -> R -> Rg, g':R -> Rc:Rd:posrealcvu:CVU f' g' c dcvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)x:Rbx:Boule c d xrho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> Rrho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> Rctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) zH:CVU rho_ rho c deps:Rep:0 < epsdelta:Rdp:delta > 0Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < epsh:Rhn0:h <> 0dh:Rabs h < {| pos := delta; cond_pos := dp |}(g (x + h) - g x) / (x + h - x) = (g (x + h) - g x) / h