Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Ranalysis1.
Require Import MVT.
Require Import Max.
Require Import Even.
Require Import Lra.
Local Open Scope R_scope.

(* Boule is French for Ball *)

Definition Boule (x:R) (r:posreal) (y:R) : Prop := Rabs (y - x) < r.

(* General properties of balls. *)


forall (c : R) (d : posreal) (x y z : R), Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z

forall (c : R) (d : posreal) (x y z : R), Boule c d x -> Boule c d y -> x <= z <= y -> Boule c d z
c:R
d:posreal
x, y, z:R
bx:Boule c d x
b_y:Boule c d y
intz:x <= z <= y

Boule c d z
unfold Boule in bx, b_y; apply Rabs_def2 in bx; apply Rabs_def2 in b_y; apply Rabs_def1; [apply Rle_lt_trans with (y - c);[apply Rplus_le_compat_r|]| apply Rlt_le_trans with (x - c);[|apply Rplus_le_compat_r]];tauto. Qed.
x, y:R
h:x < y

{c : R & {r : posreal | c - r = x /\ c + r = y}}
x, y:R
h:x < y

{c : R & {r : posreal | c - r = x /\ c + r = y}}
x, y:R
h:x < y

{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}
x, y:R
h:x < y

0 < (y - x) / 2
x, y:R
h:x < y
radius:0 < (y - x) / 2
{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}
x, y:R
h:x < y

0 < y - x
x, y:R
h:x < y
0 < / 2
x, y:R
h:x < y
radius:0 < (y - x) / 2
{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}
x, y:R
h:x < y

0 < / 2
x, y:R
h:x < y
radius:0 < (y - x) / 2
{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}
x, y:R
h:x < y
radius:0 < (y - x) / 2

{r : posreal | (x + y) / 2 - r = x /\ (x + y) / 2 + r = y}
x, y:R
h:x < y
radius:0 < (y - x) / 2

(x + y) / 2 - {| pos := (y - x) / 2; cond_pos := radius |} = x /\ (x + y) / 2 + {| pos := (y - x) / 2; cond_pos := radius |} = y
simpl; split; unfold Rdiv; field. Qed.
x, y, z:R
h:x < z < y

{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h:x < z < y

{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h:x < z < y

x * / 2 + z * / 2 < z * / 2 + y * / 2
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h1:x < z
h2:z < y

x * / 2 + z * / 2 < z * / 2 + y * / 2
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h1:x < z
h2:z < y

0 < / 2
x, y, z:R
h1:x < z
h2:z < y
x < y
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h1:x < z
h2:z < y

x < y
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2

{c : R & {r : posreal | Boule c r z /\ x < c - r /\ c + r < y}}
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2

{c0 : R & {r0 : posreal | Boule c0 r0 z /\ x < c0 - r0 /\ c0 + r0 < y}}
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

{c0 : R & {r0 : posreal | Boule c0 r0 z /\ x < c0 - r0 /\ c0 + r0 < y}}
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

Boule c r z
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
x < c - r /\ c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

z - c < r
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
- r < z - c
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
x < c - r /\ c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

z * / 2 + z * / 2 < z * / 2 + y * / 2
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
- r < z - c
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
x < c - r /\ c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

- r < z - c
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
x < c - r /\ c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

x * / 2 + z * / 2 < z * / 2 + z * / 2
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
x < c - r /\ c + r < y
x, y, z:R
h:x < z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

x < c - r /\ c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

x < c - r
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

x * / 2 + x * / 2 < x * / 2 + z * / 2
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2
c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

c + r < y
x, y, z:R
H0:x < z
H1:z < y
cmp:x * / 2 + z * / 2 < z * / 2 + y * / 2
c:R
r:posreal
P1:c - r = x * / 2 + z * / 2
P2:c + r = z * / 2 + y * / 2
H:0 < / 2

z * / 2 + y * / 2 < y * / 2 + y * / 2
apply Rplus_lt_compat_r, Rmult_lt_compat_r;assumption. Qed.

forall (c1 c2 : R) (r1 r2 : posreal) (x : R), Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y : R, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}

forall (c1 c2 : R) (r1 r2 : posreal) (x : R), Boule c1 r1 x -> Boule c2 r2 x -> {r3 : posreal | forall y : R, Boule x r3 y -> Boule c1 r1 y /\ Boule c2 r2 y}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2

{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2

Rmax (c1 - r1) (c2 - r2) < x
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x

{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x

x < Rmin (c1 + r1) (c2 + r2)
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)

{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)

0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)

{r3 : posreal | forall y : R, Rabs (y - x) < r3 -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2}
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
in1:Rabs (x - c1) < r1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
in2:Rabs (x - c2) < r2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x

forall y : R, Rabs (y - x) < {| pos := Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x); cond_pos := t |} -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x

forall y : R, Rabs (y - x) < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) -> Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
h:y - x < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
h':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - x

Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:Rmin (c1 + r1) (c2 + r2) - x > y - x
h':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - x

Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
h':- Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) < y - x

Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
h':Rmax (Rmax (c1 - r1) (c2 - r2) - x) (- (Rmin (c1 + r1) (c2 + r2) - x)) < y - x

Rabs (y - c1) < r1 /\ Rabs (y - c2) < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x

y - c1 < r1
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
- r1 < y - c1
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
y - c2 < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
- r2 < y - c2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x

- r1 < y - c1
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
y - c2 < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
- r2 < y - c2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x

y - c2 < r2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x
- r2 < y - c2
c1, c2, r1:R
r1p:0 < r1
r2:R
r2p:0 < r2
x:R
H1:x - c1 < r1
H2:- r1 < x - c1
H3:x - c2 < r2
H4:- r2 < x - c2
H:Rmax (c1 - r1) (c2 - r2) < x
H0:x < Rmin (c1 + r1) (c2 + r2)
t:0 < Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x)
H5:c1 - r1 <= Rmax (c1 - r1) (c2 - r2)
H6:c2 - r2 <= Rmax (c1 - r1) (c2 - r2)
H7:Rmin (c1 + r1) (c2 + r2) <= c1 + r1
H8:Rmin (c1 + r1) (c2 + r2) <= c2 + r2
H9:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= x - Rmax (c1 - r1) (c2 - r2)
H10:Rmin (x - Rmax (c1 - r1) (c2 - r2)) (Rmin (c1 + r1) (c2 + r2) - x) <= Rmin (c1 + r1) (c2 + r2) - x
y:R
cmp1:x - Rmax (c1 - r1) (c2 - r2) > y - x
cmp2:c1 + r1 > y /\ c2 + r2 > y
cmp3:c1 - r1 < y /\ c2 - r2 < y
cmp4:- (Rmin (c1 + r1) (c2 + r2) - x) < y - x

- r2 < y - c2
apply (fun h => Rplus_lt_reg_l _ _ _ (Rlt_le_trans _ _ _ (proj2 cmp3) h)), Req_le; ring. Qed.

forall (x : R) (r : posreal), Boule x r x

forall (x : R) (r : posreal), Boule x r x
x, r:R
rpos:0 < r

Rabs 0 < r
rewrite Rabs_pos_eq;[assumption | apply Rle_refl]. Qed.
Uniform convergence
Definition CVU (fn:nat -> R -> R) (f:R -> R) (x:R)
  (r:posreal) : Prop :=
  forall eps:R,
    0 < eps ->
    exists N : nat,
      (forall (n:nat) (y:R),
        (N <= n)%nat -> Boule x r y -> Rabs (f y - fn n y) < eps).
Normal convergence
Definition CVN_r (fn:nat -> R -> R) (r:posreal) : Type :=
  { An:nat -> R &
    { l:R |
      Un_cv (fun n:nat => sum_f_R0 (fun k:nat => Rabs (An k)) n) l /\
      (forall (n:nat) (y:R), Boule 0 r y -> Rabs (fn n y) <= An n) } }.

Definition CVN_R (fn:nat -> R -> R) : Type := forall r:posreal, CVN_r fn r.

Definition SFL (fn:nat -> R -> R)
  (cv:forall x:R, { l:R | Un_cv (fun N:nat => SP fn N x) l })
  (y:R) : R := let (a,_) := cv y in a.
In a complete space, normal convergence implies uniform convergence

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> CVU (fun n : nat => SP fn n) (SFL fn cv) 0 r

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> CVU (fun n : nat => SP fn n) (SFL fn cv) 0 r
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
eps:R
H:0 < eps

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}}
eps:R
H:0 < eps

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 -> exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0
N0:nat
H4:forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule 0 r y -> Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Rabs (SFL fn cv y - SP fn n y) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Rabs (SFL fn cv y - SP fn n y) <= Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Rabs (SFL fn cv y - SP fn n y) <= s - sum_f_R0 (fun k : nat => Rabs (An k)) n
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Un_cv (fun n0 : nat => SP fn n0 y) (SFL fn cv y)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
forall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
x:R

Un_cv (fun N : nat => SP fn N y) x -> Un_cv (fun n0 : nat => SP fn n0 y) x
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
forall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
forall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

forall n0 : nat, Rabs (fn n0 y) <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1

Rabs (fn n0 y) <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1

Rabs (fn n0 y) <= An n0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
An n0 >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1

An n0 >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1

0 <= Rabs (fn n0 y)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
Rabs (fn n0 y) <= An n0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An0 n1)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) l /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)}
s:R
H0:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s /\ (forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1)
H1:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H2:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n1 : nat, (n1 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps0
N0:nat
H4:forall n1 : nat, (n1 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n1 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
n0:nat
H7:Un_cv (fun n1 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n1) s
H8:forall (n1 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n1 y0) <= An n1

Rabs (fn n0 y) <= An n0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

s - sum_f_R0 (fun k : nat => Rabs (An k)) n >= 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

sum_f_R0 (fun k : nat => Rabs (An k)) n + 0 <= sum_f_R0 (fun k : nat => Rabs (An k)) n + (s - sum_f_R0 (fun k : nat => Rabs (An k)) n)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
forall n0 : nat, 0 <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

forall n0 : nat, 0 <= Rabs (An n0)
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 + - s + 0) < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y

Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0)
H1:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s
H2:forall (n0 : nat) (y0 : R), Boule 0 r y0 -> Rabs (fn n0 y0) <= An n0
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) 0 < eps0
N0:nat
H4:forall n0 : nat, (n0 >= N0)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 + - s + 0) < eps
n:nat
y:R
H5:(N0 <= n)%nat
H6:Boule 0 r y
H7:Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n + - s + 0) < eps

Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) < eps
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n

Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps1
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
eps0:R
H3:eps0 > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An0 n)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) l /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)}
s:R
H0:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n) s /\ (forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n)
H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps1
H2:forall (n : nat) (y : R), Boule 0 r y -> Rabs (fn n y) <= An n
eps0:R
H3:eps0 > 0
x:nat
H4:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n) s < eps0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)
H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps1
H2:forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0
eps0:R
H3:eps0 > 0
x:nat
H4:forall n0 : nat, (n0 >= x)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps0
n:nat
H5:(n >= x)%nat

R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n - s) 0 < eps0
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
r:posreal
X:{An0 : nat -> R & {l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An0 n0)}}
eps:R
H:0 < eps
An:nat -> R
X0:{l : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)}
s:R
H0:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An k)) n0) s /\ (forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0)
H1:forall eps1 : R, eps1 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (An k)) n0) s < eps1
H2:forall (n0 : nat) (y : R), Boule 0 r y -> Rabs (fn n0 y) <= An n0
eps0:R
H3:eps0 > 0
x:nat
H4:forall n0 : nat, (n0 >= x)%nat -> Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n0 - s) < eps0
n:nat
H5:(n >= x)%nat

Rabs (sum_f_R0 (fun k : nat => Rabs (An k)) n - s - 0) < eps0
rewrite Rminus_0_r; apply H4; assumption. Qed.
Each limit of a sequence of functions which converges uniformly is continue

forall (fn : nat -> R -> R) (f : R -> R) (x : R) (r : posreal), CVU fn f x r -> (forall (n : nat) (y : R), Boule x r y -> continuity_pt (fn n) y) -> forall y : R, Boule x r y -> continuity_pt f y

forall (fn : nat -> R -> R) (f : R -> R) (x : R) (r : posreal), CVU fn f x r -> (forall (n : nat) (y : R), Boule x r y -> continuity_pt (fn n) y) -> forall y : R, Boule x r y -> continuity_pt f y
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:CVU fn f x r
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

(exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)) -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R

del > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R

del > 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
r0:del1 <= del2

del1 > 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps0
H0:forall (n0 : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n0) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n0 : nat) (y0 : R), (N0 <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
n:~ del1 <= del2
del2 > 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps0
H0:forall (n0 : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n0) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n0 : nat) (y0 : R), (N0 <= n0)%nat -> Boule x r y0 -> Rabs (f y0 - fn n0 y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
n:~ del1 <= del2

del2 > 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < alp -> Rabs (fn N0 x0 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del2 -> Rabs (fn N0 x0 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R

forall x0 : R, D_x no_cond y x0 /\ Rabs (x0 - y) < del -> Rabs (f x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - f y) <= Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - f y) <= Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (fn N0 x0 - f y) <= Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - fn N0 x0) + Rabs (fn N0 x0 - fn N0 y) + Rabs (fn N0 y - f y) < eps / 3 + eps / 3 + eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (f x0 - fn N0 x0) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

(N0 <= N0)%nat
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Boule x r x0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Boule x r x0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (x0 - y) < del1
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:D_x no_cond y x0
H11:Rabs (x0 - y) < del

Rabs (x0 - y) < del1
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:D_x no_cond y x0
H11:Rabs (x0 - y) < del

Rabs (x0 - y) < del
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:D_x no_cond y x0
H11:Rabs (x0 - y) < del
del <= del1
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:D_x no_cond y x0
H11:Rabs (x0 - y) < del

del <= del1
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3

Rabs (fn N0 x0 - fn N0 y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3

D_x no_cond y x0 /\ Rabs (x0 - y) < del2
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3

D_x no_cond y x0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3
Rabs (x0 - y) < del2
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3

Rabs (x0 - y) < del2
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3
H12:D_x no_cond y x0
H13:Rabs (x0 - y) < del

Rabs (x0 - y) < del
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3
H12:D_x no_cond y x0
H13:Rabs (x0 - y) < del
del <= del2
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
H10:del2 > 0
H11:forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3
H12:D_x no_cond y x0
H13:Rabs (x0 - y) < del

del <= del2
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Rabs (fn N0 y - f y) < eps / 3
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

(N0 <= N0)%nat
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
Boule x r y
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

Boule x r y
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

eps / 3 + eps / 3 + eps / 3 = eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

3 * (eps / 3 + eps / 3 + eps / 3) = 3 * eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

eps + eps + eps = 3 * eps
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del
3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < alp -> Rabs (fn N0 x1 - fn N0 y) < eps0)
H6:exists del0 : posreal, forall h : R, Rabs h < del0 -> Boule x r (y + h)
del1:posreal
H7:forall h : R, Rabs h < del1 -> Boule x r (y + h)
del2:R
H8:del2 > 0 /\ (forall x1 : R, D_x no_cond y x1 /\ Rabs (x1 - y) < del2 -> Rabs (fn N0 x1 - fn N0 y) < eps / 3)
del:=Rmin del1 del2:R
x0:R
H9:D_x no_cond y x0 /\ Rabs (x0 - y) < del

3 <> 0
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

0 < r - Rabs (x - y) -> exists del : posreal, forall h : R, Rabs h < del -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)

forall h : R, Rabs h < {| pos := r - Rabs (x - y); cond_pos := H6 |} -> Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

Boule x r (y + h)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

Rabs (h + (y - x)) <= Rabs h + Rabs (y - x)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)
Rabs h + Rabs (y - x) < r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

Rabs h + Rabs (y - x) < r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

- Rabs (x - y) + (Rabs h + Rabs (y - x)) < - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

- Rabs (x - y) + (Rabs h + Rabs (x - y)) < - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

- Rabs (x - y) + (Rabs h + Rabs (x - y)) < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)
r - Rabs (x - y) = - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

Rabs h < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)
Rabs h = - Rabs (x - y) + (Rabs h + Rabs (x - y))
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)
r - Rabs (x - y) = - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

Rabs h = - Rabs (x - y) + (Rabs h + Rabs (x - y))
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)
r - Rabs (x - y) = - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
H6:0 < r - Rabs (x - y)
h:R
H7:Rabs h < r - Rabs (x - y)

r - Rabs (x - y) = - Rabs (x - y) + r
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y
0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Boule x r y
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

0 < r - Rabs (x - y)
fn:nat -> R -> R
f:R -> R
x:R
r:posreal
H:forall eps0 : R, 0 < eps0 -> exists N : nat, forall (n : nat) (y0 : R), (N <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps0
H0:forall (n : nat) (y0 : R), Boule x r y0 -> continuity_pt (fn n) y0
y:R
H1:Rabs (y - x) < r
eps:R
H2:eps > 0
H3:0 < eps / 3
N0:nat
H4:forall (n : nat) (y0 : R), (N0 <= n)%nat -> Boule x r y0 -> Rabs (f y0 - fn n y0) < eps / 3
H5:continuity_pt (fn N0) y

Rabs (y - x) + 0 < Rabs (y - x) + (r - Rabs (y - x))
rewrite Rplus_0_r; replace (Rabs (y - x) + (r - Rabs (y - x))) with (pos r); [ apply H1 | ring ]. Qed. (**********)

forall (fn : nat -> R -> R) (N : nat) (x : R), (forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

forall (fn : nat -> R -> R) (N : nat) (x : R), (forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
fn:nat -> R -> R
x:R
H:forall n : nat, (n <= 0)%nat -> continuity_pt (fn n) x

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) 0) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) (S N)) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) (S N)) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

continuity_pt ((fun y : R => sum_f_R0 (fun k : nat => fn k y) N) + (fun y : R => fn (S N) y)) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
continuity_pt (fun y : R => fn (S N) y) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
continuity_pt (fun y : R => fn (S N) y) x
fn:nat -> R -> R
N:nat
x:R
H:forall n0 : nat, (n0 <= S N)%nat -> continuity_pt (fn n0) x
HrecN:(forall n0 : nat, (n0 <= N)%nat -> continuity_pt (fn n0) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
n:nat
H0:(n <= N)%nat

(n <= S N)%nat
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x
continuity_pt (fun y : R => fn (S N) y) x
fn:nat -> R -> R
N:nat
x:R
H:forall n : nat, (n <= S N)%nat -> continuity_pt (fn n) x
HrecN:(forall n : nat, (n <= N)%nat -> continuity_pt (fn n) x) -> continuity_pt (fun y : R => sum_f_R0 (fun k : nat => fn k y) N) x

continuity_pt (fun y : R => fn (S N) y) x
apply (H (S N)); apply le_n. Qed.
Continuity and normal convergence

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> (forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> forall y : R, Boule 0 r y -> continuity_pt (SFL fn cv) y

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}) (r : posreal), CVN_r fn r -> (forall (n : nat) (y : R), Boule 0 r y -> continuity_pt (fn n) y) -> forall y : R, Boule 0 r y -> continuity_pt (SFL fn cv) y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y

CVU ?fn (SFL fn cv) ?x ?r
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
forall (n : nat) (y0 : R), Boule ?x ?r y0 -> continuity_pt (?fn n) y0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
Boule ?x ?r y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y

CVN_r fn ?r
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
forall (n : nat) (y0 : R), Boule 0 ?r y0 -> continuity_pt ((fun n0 : nat => SP fn n0) n) y0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
Boule 0 ?r y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y

forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt ((fun n0 : nat => SP fn n0) n) y0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
Boule 0 r y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n0 : nat) (y1 : R), Boule 0 r y1 -> continuity_pt (fn n0) y1
y:R
H0:Boule 0 r y
n:nat
y0:R
H1:Boule 0 r y0

forall n0 : nat, (n0 <= n)%nat -> continuity_pt (fn n0) y0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
Boule 0 r y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n1 : nat) (y1 : R), Boule 0 r y1 -> continuity_pt (fn n1) y1
y:R
H0:Boule 0 r y
n:nat
y0:R
H1:Boule 0 r y0
n0:nat
H2:(n0 <= n)%nat

Boule 0 r y0
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y
Boule 0 r y
fn:nat -> R -> R
cv:forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
r:posreal
X:CVN_r fn r
H:forall (n : nat) (y0 : R), Boule 0 r y0 -> continuity_pt (fn n) y0
y:R
H0:Boule 0 r y

Boule 0 r y
apply H0. Qed.

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}), CVN_R fn -> (forall n : nat, continuity (fn n)) -> continuity (SFL fn cv)

forall (fn : nat -> R -> R) (cv : forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}), CVN_R fn -> (forall n : nat, continuity (fn n)) -> continuity (SFL fn cv)
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R

continuity_pt (SFL fn cv) x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1

continuity_pt (SFL fn cv) x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1

Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x -> continuity_pt (SFL fn cv) x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x

CVN_r fn {| pos := Rabs x + 1; cond_pos := H0 |}
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} y -> continuity_pt (fn n) y
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x

forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} y -> continuity_pt (fn n) y
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
H1:Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x

Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1
Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
fn:nat -> R -> R
cv:forall x0 : R, {l : R | Un_cv (fun N : nat => SP fn N x0) l}
X:CVN_R fn
H:forall n : nat, continuity (fn n)
x:R
H0:0 < Rabs x + 1

Boule 0 {| pos := Rabs x + 1; cond_pos := H0 |} x
unfold Boule; simpl; rewrite Rminus_0_r; pattern (Rabs x) at 1; rewrite <- Rplus_0_r; apply Rplus_lt_compat_l; apply Rlt_0_1. Qed.
As R is complete, normal convergence implies that (fn) is simply-uniformly convergent

forall fn : nat -> R -> R, CVN_R fn -> forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}

forall fn : nat -> R -> R, CVN_R fn -> forall x : R, {l : R | Un_cv (fun N : nat => SP fn N x) l}
fn:nat -> R -> R
X:CVN_R fn
x:R

Cauchy_crit (fun N : nat => SP fn N x)
fn:nat -> R -> R
X:CVN_R fn
x:R
An:=fun N : nat => fn N x:nat -> R

Cauchy_crit (fun N : nat => sum_f_R0 An N)
fn:nat -> R -> R
X:CVN_R fn
x:R
An:=fun N : nat => fn N x:nat -> R

Cauchy_crit_series An
fn:nat -> R -> R
X:CVN_R fn
x:R
An:=fun N : nat => fn N x:nat -> R

Cauchy_crit_series (fun i : nat => Rabs (An i))
fn:nat -> R -> R
X:CVN_R fn
x:R
An:=fun N : nat => fn N x:nat -> R

{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R

0 < Rabs x + 1 -> {l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:CVN_r fn {| pos := Rabs x + 1; cond_pos := H |}

{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}

{l : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)

{l0 : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

{l0 : R | Un_cv (fun N : nat => sum_f_R0 (fun i : nat => Rabs (An i)) N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

forall n : nat, 0 <= Rabs (An n) <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat

0 <= Rabs (An n)
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat
Rabs (An n) <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat

Rabs (An n) <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat

Rabs x < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

{l0 : R | Un_cv (fun N : nat => sum_f_R0 Bn N) l0}
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

Un_cv (fun N : nat => sum_f_R0 Bn N) l
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

(forall n : nat, 0 <= Bn n) -> Un_cv (fun N : nat => sum_f_R0 Bn N) l
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps0
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
H5:forall n : nat, 0 <= Bn n
eps:R
H6:eps > 0

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 Bn n) l < eps
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps0
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
H5:forall n : nat, 0 <= Bn n
eps:R
H6:eps > 0
x0:nat
H7:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps

exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 Bn n) l < eps
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
H5:forall n0 : nat, 0 <= Bn n0
eps:R
H6:eps > 0
x0:nat
H7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps
n:nat
H8:(n >= x0)%nat

R_dist (sum_f_R0 Bn n) l < eps
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
H5:forall n0 : nat, 0 <= Bn n0
eps:R
H6:eps > 0
x0:nat
H7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps
n:nat
H8:(n >= x0)%nat

R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l < eps
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
H5:forall n0 : nat, 0 <= Bn n0
eps:R
H6:eps > 0
x0:nat
H7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps
n:nat
H8:(n >= x0)%nat
sum_f_R0 (fun k : nat => Rabs (Bn k)) n = sum_f_R0 Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps0
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
H5:forall n0 : nat, 0 <= Bn n0
eps:R
H6:eps > 0
x0:nat
H7:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l < eps
n:nat
H8:(n >= x0)%nat

sum_f_R0 (fun k : nat => Rabs (Bn k)) n = sum_f_R0 Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n
forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= An0 n)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l0 /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)}
l:R
H2:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l /\ (forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n)
H3:Un_cv (fun n : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n) l
H4:forall (n : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n y) <= Bn n

forall n : nat, 0 <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat

0 <= Rabs (An n)
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat
Rabs (An n) <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
H:0 < Rabs x + 1
H0:{An0 : nat -> R & {l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (An0 k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= An0 n0)}}
Bn:nat -> R
H1:{l0 : R | Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l0 /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)}
l:R
H2:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l /\ (forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0)
H3:Un_cv (fun n0 : nat => sum_f_R0 (fun k : nat => Rabs (Bn k)) n0) l
H4:forall (n0 : nat) (y : R), Boule 0 {| pos := Rabs x + 1; cond_pos := H |} y -> Rabs (fn n0 y) <= Bn n0
n:nat

Rabs (An n) <= Bn n
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R
0 < Rabs x + 1
fn:nat -> R -> R
X:forall r : posreal, CVN_r fn r
x:R
An:=fun N : nat => fn N x:nat -> R

0 < Rabs x + 1
apply Rplus_le_lt_0_compat; [ apply Rabs_pos | apply Rlt_0_1 ]. Qed. (* Uniform convergence implies pointwise simple convergence *)

forall (f : nat -> R -> R) (g : R -> R) (c : R) (d : posreal), CVU f g c d -> forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)

forall (f : nat -> R -> R) (g : R -> R) (c : R) (d : posreal), CVU f g c d -> forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)
f:nat -> R -> R
g:R -> R
c:R
d:posreal
cvu:CVU f g c d
x:R
bx:Boule c d x
eps:R
ep:eps > 0
N:nat
Pn:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g y - f n y) < eps

exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (f n x) (g x) < eps
exists N; intros n nN; rewrite R_dist_sym; apply Pn; assumption. Qed. (* convergence is preserved through extensional equality *)

forall (f : nat -> R -> R) (g1 g2 : R -> R) (c : R) (d : posreal), CVU f g1 c d -> (forall x : R, Boule c d x -> g1 x = g2 x) -> CVU f g2 c d

forall (f : nat -> R -> R) (g1 g2 : R -> R) (c : R) (d : posreal), CVU f g1 c d -> (forall x : R, Boule c d x -> g1 x = g2 x) -> CVU f g2 c d
f:nat -> R -> R
g1, g2:R -> R
c:R
d:posreal
cvu:CVU f g1 c d
q:forall x : R, Boule c d x -> g1 x = g2 x
eps:R
ep:0 < eps
N:nat
Pn:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g1 y - f n y) < eps

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (g2 y - f n y) < eps
exists N; intros; rewrite <- q; auto. Qed. (* When a sequence of derivable functions converge pointwise towards a function g, with the derivatives converging uniformly towards a function g', then the function g' is the derivative of g. *)

forall (f f' : nat -> R -> R) (g g' : R -> R) (c : R) (d : posreal), CVU f' g' c d -> (forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)) -> (forall (n : nat) (x : R), Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x : R, Boule c d x -> derivable_pt_lim g x (g' x)

forall (f f' : nat -> R -> R) (g g' : R -> R) (c : R) (d : posreal), CVU f' g' c d -> (forall x : R, Boule c d x -> Un_cv (fun n : nat => f n x) (g x)) -> (forall (n : nat) (x : R), Boule c d x -> derivable_pt_lim (f n) x (f' n x)) -> forall x : R, Boule c d x -> derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x

derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R

derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R

derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R

forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z

continuity_pt (rho_ n) x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0

exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (rho_ n x0) (rho_ n x) < eps')
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'

exists alp0 : R, alp0 > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp0 -> dist R_met (rho_ n x0) (rho_ n x) < eps')
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'

forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (rho_ n x0) (rho_ n x) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp

R_dist (if Req_EM_T z' x then f' n x else (f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp
abs:z' = x

R_dist (f' n x) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp
R_dist ((f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp

R_dist ((f n z' - f n x) / (z' - x)) (if Req_EM_T x x then f' n x else (f n x - f n x) / (x - x)) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp

R_dist ((f n z' - f n x) / (z' - x)) (f' n x) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xz:x = z
eps':R
ep':eps' > 0
alp:posreal
Pa:forall h : R, h <> 0 -> Rabs h < alp -> Rabs ((f n (x + h) - f n x) / h - f' n x) < eps'
z':Base R_met
xnz':x <> z'
dxz':R_dist z' x < alp

R_dist ((f n (x + (z' - x)) - f n x) / (z' - x)) (f' n x) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y

0 < Rmin delta (Rabs (z - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (f n y - f n x) / (y - x) = rho_ n y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xy:y = x

(f n y - f n x) / (y - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xny:y <> x
(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist x z < Rmin delta (Rabs (z - x))
xy:y = x

(f n y - f n x) / (y - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xny:y <> x
(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist x z < Rmin delta (Rabs (z - x))
xy:y = x
r:delta <= Rabs (z - x)

(f n y - f n x) / (y - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n1 : nat => f n1 x0) (g x0)
dff':forall (n1 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n1) x0 (f' n1 x0)
x:R
bx:Boule c d x
rho_:=fun (n1 : nat) (y0 : R) => if Req_EM_T y0 x then f' n1 x else (f n1 y0 - f n1 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist x z < Rmin delta (Rabs (z - x))
xy:y = x
n0:~ delta <= Rabs (z - x)
(f n y - f n x) / (y - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xny:y <> x
(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n1 : nat => f n1 x0) (g x0)
dff':forall (n1 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n1) x0 (f' n1 x0)
x:R
bx:Boule c d x
rho_:=fun (n1 : nat) (y0 : R) => if Req_EM_T y0 x then f' n1 x else (f n1 y0 - f n1 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist x z < Rmin delta (Rabs (z - x))
xy:y = x
n0:~ delta <= Rabs (z - x)

(f n y - f n x) / (y - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xny:y <> x
(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y0 : R, Boule z delta y0 -> Boule c d y0 /\ Boule c d y0
dz:0 < Rmin delta (Rabs (z - x))
y:R
dyz:R_dist y z < Rmin delta (Rabs (z - x))
xny:y <> x

(f n y - f n x) / (y - x) = (f n y - f n x) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y
continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
t':forall y : R, R_dist y z < Rmin delta (Rabs (z - x)) -> (fun z0 : R => (f n z0 - f n x) / (z0 - x)) y = rho_ n y

continuity_pt (rho_ n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (fun z0 : R => (f n z0 - f n x) / (z0 - x)) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (fun z0 : R => f n z0 - f n x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
continuity_pt (fun z0 : R => z0 - x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
z - x <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (f n) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
continuity_pt (fun _ : R => f n x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
continuity_pt (fun z0 : R => z0 - x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
z - x <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (fun _ : R => f n x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
continuity_pt (fun z0 : R => z0 - x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
z - x <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

continuity_pt (fun z0 : R => z0 - x) z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
z - x <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))

z - x <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
n:nat
z:R
bz:Boule c d z
xnz:x <> z
delta:posreal
Pd:forall y : R, Boule z delta y -> Boule c d y /\ Boule c d y
dz:0 < Rmin delta (Rabs (z - x))
zx0:z - x = 0

x = z - x + x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z

derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z

CVU rho_ rho c d
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps

0 < eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8

exists N : nat, forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8

forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
z:R
bz:Boule c d z

Rabs (f' n z - f' p z) < eps / 8 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
z:R
bz:Boule c d z

Rabs (- (f' n z - f' p z)) < eps / 8 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
z:R
bz:Boule c d z

Rabs (g' z - f' n z - (g' z - f' p z)) < eps / 8 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y : R) => if Req_EM_T y x then f' n0 x else (f n0 y - f n0 x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y : R), (N <= n0)%nat -> Boule c d y -> Rabs (g' y - f' n0 y) < eps / 8
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
z:R
bz:Boule c d z

Rabs (g' z - f' n z) + Rabs (g' z - f' p z) < eps / 8 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4

forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y

Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y

Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y

Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y

x = x /\ y = y \/ x = y /\ y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y
x <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y
x <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y

x <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y
x <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:x <= y

x <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y

Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y

y = x /\ x = y \/ y = y /\ x = x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
y <= x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
y <= x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y

y <= x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y
y <= x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
H:~ x <= y

y <= x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x

Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x

Rmin x y < Rmax x y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y

x <= y -> x < y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
y <= x -> y < x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x

y <= x -> y < x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y

Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y

forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
z:R
intz:Rmin x y <= z <= Rmax x y

derivable_pt_lim (f n) z (f' n z)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
z:R
intz:Rmin x y <= z <= Rmax x y
derivable_pt_lim (f p) z (f' p z)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
z:R
intz:Rmin x y <= z <= Rmax x y

derivable_pt_lim (f p) z (f' p z)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)
Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)

Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z : R, Rmin x y <= z <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z (f' n z - f' p z)

Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
mm0:Rmin x y = x /\ Rmax x y = y \/ Rmin x y = y /\ Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs ((f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs (f' n z - f' p z) < eps * / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Boule c d z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:x < z < y

x <= z <= y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = x
q2:Rmax x y = y
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs ((f n y - f p y - (f n x - f p x)) / (y - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs ((f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rabs (f' n z - f' p z) < eps * / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Boule c d z
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

Rmax x y - Rmin x y <> 0
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y
(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z0 : R), Boule c d z0 -> continuity_pt (rho_ n0) z0
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z0 : R, Boule c d z0 -> Rabs (f' n0 z0 - f' p0 z0) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
q1:Rmin x y = y
q2:Rmax x y = x
mm:Rmin x y < Rmax x y
dm:forall z0 : R, Rmin x y <= z0 <= Rmax x y -> derivable_pt_lim (fun x0 : R => f n x0 - f p x0) z0 (f' n z0 - f' p z0)
z:R
Pz:f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y)) = (f' n z - f' p z) * (Rmax x y - Rmin x y)
inz:Rmin x y < z < Rmax x y

(f n (Rmax x y) - f p (Rmax x y) - (f n (Rmin x y) - f p (Rmin x y))) / (Rmax x y - Rmin x y) = (f n y - f p y - (f n x - f p x)) / (y - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4

forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8

0 < Rmin (Rmin d' d2) delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8

0 < delta
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
0 < / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8

0 < / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8 + (eps / 4 + eps / 8)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n y) (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

y <> y + Rmin (Rmin d' d2) delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rabs (y + Rmin (Rmin d' d2) delta / 2 - y) < d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rabs (Rmin (Rmin d' d2) delta / 2) < d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin (Rmin d' d2) delta / 2 < d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin (Rmin d' d2) delta <= d'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) + R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 4 + eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) <= eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ n (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist ((f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist ((f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) ((f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Boule c d (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

Boule c d (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

Boule c d y
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta
Boule c d (y + delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta
y <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

Boule c d (y + delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta
y <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

Boule x delta (y + delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta
y <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

y <= y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

y + Rmin (Rmin d' d2) delta / 2 <= y + delta / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
H:0 < delta

0 <= / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ p (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (if Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x then f' p x else (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymx:y + Rmin (Rmin d' d2) delta / 2 = x

(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = f' p x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x
(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x

(f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f p (y + Rmin (Rmin d' d2) delta / 2) - f p x) / (y + Rmin (Rmin d' d2) delta / 2 - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = rho_ n (y + Rmin (Rmin d' d2) delta / 2)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (if Req_EM_T (y + Rmin (Rmin d' d2) delta / 2) x then f' n x else (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymx:y + Rmin (Rmin d' d2) delta / 2 = x

(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = f' n x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x
(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
ymnx:y + Rmin (Rmin d' d2) delta / 2 <> x

(f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x) = (f n (y + Rmin (Rmin d' d2) delta / 2) - f n x) / (y + Rmin (Rmin d' d2) delta / 2 - x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

R_dist (rho_ p (y + Rmin (Rmin d' d2) delta / 2)) (rho_ p y) <= eps / 8
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

dist R_met (y + Rmin (Rmin d' d2) delta / 2) y < d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rabs (y + Rmin (Rmin d' d2) delta / 2 - y) < d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rabs (Rmin (Rmin d' d2) delta / 2) < d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin (Rmin d' d2) delta / 2 < d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin (Rmin d' d2) delta <= d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin (Rmin d' d2) delta <= Rmin d' d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2
Rmin d' d2 <= d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xy:x = y
delta:posreal
Pdelta:forall y0 : R, Boule x delta y0 -> Boule c d y0 /\ Boule c d y0
d':R
dp:d' > 0
Pd:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d' -> dist R_met (rho_ n x0) (rho_ n y) < eps / 8
d2:R
dp2:d2 > 0
Pd2:forall x0 : Base R_met, D_x no_cond y x0 /\ dist R_met x0 y < d2 -> dist R_met (rho_ p x0) (rho_ p y) < eps / 8
mmpos:0 < Rmin (Rmin d' d2) delta / 2

Rmin d' d2 <= d2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y
Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y

Rabs (rho_ n y - rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p0 z) < eps / 4
step_2:forall n0 p0 : nat, (N <= n0)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
n, p:nat
nN:(N <= n)%nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
xny:x <> y

Rabs (rho_ n y - rho_ p y) < eps / 4
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2

forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2

forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
e:y = x

Un_cv (fun n : nat => f' n x) (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
e:y = x
eps':R
ep':eps' > 0
N2:nat
Pn2:forall (n : nat) (y0 : R), (N2 <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps'

exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (f' n x) (g' x) < eps'
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x

Un_cv (fun n0 : nat => (f n0 y - f n0 x) / (y - x)) ((g y - g x) / (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x

Un_cv (fun i : nat => f i y - f i x) (g y - g x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun _ : nat => / (y - x)) (/ (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x

Un_cv (fun i : nat => f i y) (g y)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun i : nat => f i x) (g x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun _ : nat => / (y - x)) (/ (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x

Un_cv (fun i : nat => f i x) (g x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x
Un_cv (fun _ : nat => / (y - x)) (/ (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n0 : nat => f n0 x0) (g x0)
dff':forall (n0 : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n0) x0 (f' n0 x0)
x:R
bx:Boule c d x
rho_:=fun (n0 : nat) (y0 : R) => if Req_EM_T y0 x then f' n0 x else (f n0 y0 - f n0 x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n0 : nat) (z : R), Boule c d z -> continuity_pt (rho_ n0) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n0 : nat) (y0 : R), (N <= n0)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n0 y0) < eps / 8
cauchy1:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n0 z - f' p z) < eps / 4
step_2:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n0 y0 - f n0 x) / (y0 - x) - (f p y0 - f p x) / (y0 - x)) < eps / 4
unif_ac:forall n0 p : nat, (N <= n0)%nat -> (N <= p)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n0 y0 - rho_ p y0) <= eps / 2
y:R
b_y:Boule c d y
n:y <> x

Un_cv (fun _ : nat => / (y - x)) (/ (y - x))
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)
forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
cvrho:forall y : R, Boule c d y -> Un_cv (fun n : nat => rho_ n y) (rho y)

forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y

Rabs (rho y - rho_ p y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y

Rabs (rho y - rho_ p y) < eps / 2 + eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2

Rabs (rho y - rho_ p y) < eps / 2 + eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2
N2:nat
Pn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2

Rabs (rho y - rho_ p y) < eps / 2 + eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2
N2:nat
Pn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2

R_dist (rho y) (rho_ (Nat.max N N2) y) + R_dist (rho_ (Nat.max N N2) y) (rho_ p y) < eps / 2 + eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2
N2:nat
Pn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2

R_dist (rho y) (rho_ (Nat.max N N2) y) < eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2
N2:nat
Pn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2
R_dist (rho_ (Nat.max N N2) y) (rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y0 : R) => if Req_EM_T y0 x then f' n x else (f n y0 - f n x) / (y0 - x):nat -> R -> R
rho:=fun y0 : R => if Req_EM_T y0 x then g' x else (g y0 - g x) / (y0 - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y0 : R), (N <= n)%nat -> Boule c d y0 -> Rabs (g' y0 - f' n y0) < eps / 8
cauchy1:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p0 z) < eps / 4
step_2:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> x <> y0 -> Rabs ((f n y0 - f n x) / (y0 - x) - (f p0 y0 - f p0 x) / (y0 - x)) < eps / 4
unif_ac:forall n p0 : nat, (N <= n)%nat -> (N <= p0)%nat -> forall y0 : R, Boule c d y0 -> Rabs (rho_ n y0 - rho_ p0 y0) <= eps / 2
cvrho:forall y0 : R, Boule c d y0 -> Un_cv (fun n : nat => rho_ n y0) (rho y0)
p:nat
pN:(N <= p)%nat
y:R
b_y:Boule c d y
ep2:0 < eps / 2
N2:nat
Pn2:forall n : nat, (n >= N2)%nat -> R_dist (rho_ n y) (rho y) < eps / 2

R_dist (rho_ (Nat.max N N2) y) (rho_ p y) <= eps / 2
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps
exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
eps:R
ep:0 < eps
ep8:0 < eps / 8
N:nat
Pn1:forall (n : nat) (y : R), (N <= n)%nat -> Boule c d y -> Rabs (g' y - f' n y) < eps / 8
cauchy1:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall z : R, Boule c d z -> Rabs (f' n z - f' p z) < eps / 4
step_2:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> x <> y -> Rabs ((f n y - f n x) / (y - x) - (f p y - f p x) / (y - x)) < eps / 4
unif_ac:forall n p : nat, (N <= n)%nat -> (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho_ n y - rho_ p y) <= eps / 2
unif_ac':forall p : nat, (N <= p)%nat -> forall y : R, Boule c d y -> Rabs (rho y - rho_ p y) < eps

exists N0 : nat, forall (n : nat) (y : R), (N0 <= n)%nat -> Boule c d y -> Rabs (rho y - rho_ n y) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d

derivable_pt_lim g x (g' x)
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - g' x) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps

exists delta0 : posreal, forall h : R, h <> 0 -> Rabs h < delta0 -> Rabs ((g (x + h) - g x) / h - g' x) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

Rabs ((g (x + h) - g x) / h - g' x) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

Rabs (rho (x + h) - g' x) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

Rabs (rho (x + h) - rho x) < eps
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho x = g' x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

x <> x + h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
dist R_met (x + h) x < delta
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho x = g' x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

dist R_met (x + h) x < delta
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho x = g' x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

rho x = g' x
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

rho (x + h) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
abs:x + h = x

g' x = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}
(g (x + h) - g x) / (x + h - x) = (g (x + h) - g x) / h
f, f':nat -> R -> R
g, g':R -> R
c:R
d:posreal
cvu:CVU f' g' c d
cvp:forall x0 : R, Boule c d x0 -> Un_cv (fun n : nat => f n x0) (g x0)
dff':forall (n : nat) (x0 : R), Boule c d x0 -> derivable_pt_lim (f n) x0 (f' n x0)
x:R
bx:Boule c d x
rho_:=fun (n : nat) (y : R) => if Req_EM_T y x then f' n x else (f n y - f n x) / (y - x):nat -> R -> R
rho:=fun y : R => if Req_EM_T y x then g' x else (g y - g x) / (y - x):R -> R
ctrho:forall (n : nat) (z : R), Boule c d z -> continuity_pt (rho_ n) z
H:CVU rho_ rho c d
eps:R
ep:0 < eps
delta:R
dp:delta > 0
Pd:forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < delta -> dist R_met (rho x0) (rho x) < eps
h:R
hn0:h <> 0
dh:Rabs h < {| pos := delta; cond_pos := dp |}

(g (x + h) - g x) / (x + h - x) = (g (x + h) - g x) / h
replace (x + h - x) with h by ring; reflexivity. Qed.