Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Rseries. Require Import Rcomplete. Require Import Max. Local Open Scope R_scope.forall (An : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An Nforall (An : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An NAn:nat -> RH:forall n : nat, (n <= 0)%nat -> 0 < An n0 < sum_f_R0 An 0An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> 0 < An nHrecN:(forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N0 < sum_f_R0 An (S N)An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> 0 < An nHrecN:(forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N0 < sum_f_R0 An (S N)An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> 0 < An nHrecN:(forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N0 < sum_f_R0 An NAn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> 0 < An nHrecN:(forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N0 < An (S N)apply H; apply le_n. Qed. (* Chasles' relation *)An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> 0 < An nHrecN:(forall n : nat, (n <= N)%nat -> 0 < An n) -> 0 < sum_f_R0 An N0 < An (S N)forall (An : nat -> R) (m n : nat), (m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)forall (An : nat -> R) (m n : nat), (m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)An:nat -> Rm:natH:(m < 0)%natsum_f_R0 An 0 = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (0 - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)sum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)sum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = n -> sum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An n + An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An n + An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S (n - S m))An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An n + An (S n) = sum_f_R0 An m + (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + An (S m + S (n - S m))%nat)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An n + An (S n) = sum_f_R0 An m + (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + An (S n))An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS n = (S m + S (n - S m))%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natsum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + An (S n) = sum_f_R0 An m + (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + An (S n))An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS n = (S m + S (n - S m))%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS n = (S m + S (n - S m))%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natINR n + 1 = INR m + 1 + (INR n - INR (S m) + 1)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natS (n - S m) = (S n - S m)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%natINR n - INR (S m) + 1 = INR (S n) - INR (S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= S n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= S n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:(m < n)%nat(S m <= n)%natAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An (S n) = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (S n - S m)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H0:(m < n)%nat \/ m = nH1:m = nsum_f_R0 An n + An (S n) = sum_f_R0 An n + An (S (n + 0))An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)(m < n)%nat \/ m = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)H1:m = n(n < n)%nat \/ n = nAn:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)m0:natH1:(S m <= n)%natH0:m0 = n(m < n)%nat \/ m = nleft; apply lt_le_trans with (S m); [ apply lt_n_Sn | assumption ]. Qed. (* Sum of geometric sequences *)An:nat -> Rm, n:natH:(m < S n)%natHrecn:(m < n)%nat -> sum_f_R0 An n = sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)m0:natH1:(S m <= n)%natH0:m0 = n(m < n)%nat \/ m = nforall (k : R) (N : nat), k <> 1 -> sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)forall (k : R) (N : nat), k <> 1 -> sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)k:RN:natH:k <> 11 - k <> 0 -> sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)k:RN:natH:k <> 11 - k <> 0k:RH:k <> 1H0:1 - k <> 0sum_f_R0 (fun i : nat => k ^ i) 0 = (1 - k ^ 1) / (1 - k)k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)sum_f_R0 (fun i : nat => k ^ i) (S N) = (1 - k ^ S (S N)) / (1 - k)k:RN:natH:k <> 11 - k <> 0k:RH:k <> 1H0:1 - k <> 01 = 1k:RH:k <> 1H0:1 - k <> 01 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)sum_f_R0 (fun i : nat => k ^ i) (S N) = (1 - k ^ S (S N)) / (1 - k)k:RN:natH:k <> 11 - k <> 0k:RH:k <> 1H0:1 - k <> 01 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)sum_f_R0 (fun i : nat => k ^ i) (S N) = (1 - k ^ S (S N)) / (1 - k)k:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)sum_f_R0 (fun i : nat => k ^ i) (S N) = (1 - k ^ S (S N)) / (1 - k)k:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k) = (1 - k ^ S (S N)) / (1 - k)k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k) = (1 - k ^ S N) / (1 - k) + k ^ S Nk:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k) * ((1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k)) = (1 - k) * ((1 - k ^ S (S N)) / (1 - k))k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)1 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k) = (1 - k ^ S N) / (1 - k) + k ^ S Nk:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)1 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k) = (1 - k ^ S N) / (1 - k) + k ^ S Nk:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N + (1 - k) * k ^ S N) / (1 - k) = (1 - k ^ S N) / (1 - k) + k ^ S Nk:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)(1 - k ^ S N) * / (1 - k) + k ^ S N * 1 = (1 - k ^ S N) * / (1 - k) + k ^ S Nk:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)1 - k <> 0k:RN:natH:k <> 11 - k <> 0k:RN:natH:k <> 1H0:1 - k <> 0HrecN:sum_f_R0 (fun i : nat => k ^ i) N = (1 - k ^ S N) / (1 - k)1 - k <> 0k:RN:natH:k <> 11 - k <> 0apply Rminus_eq_contra; red; intro; elim H; symmetry ; assumption. Qed.k:RN:natH:k <> 11 - k <> 0forall (An : nat -> R) (k : R) (N : nat), 0 <= k -> (forall i : nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ Nforall (An : nat -> R) (k : R) (N : nat), 0 <= k -> (forall i : nat, An (S i) < k * An i) -> An N <= An 0%nat * k ^ NAn:nat -> Rk:RH:0 <= kH0:forall i : nat, An (S i) < k * An iAn 0%nat <= An 0%nat * k ^ 0An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ NAn (S N) <= An 0%nat * k ^ S NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ NAn (S N) <= An 0%nat * k ^ S NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ NAn (S N) <= k * An NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ Nk * An N <= An 0%nat * k ^ S NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ Nk * An N <= An 0%nat * k ^ S NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ Nk * An N <= An 0%nat * k ^ (N + 1)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ N0 <= kAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ NAn N <= An 0%nat * k ^ Napply HrecN. Qed.An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:An N <= An 0%nat * k ^ NAn N <= An 0%nat * k ^ Nforall (An : nat -> R) (N : nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N)intros; reflexivity. Qed.forall (An : nat -> R) (N : nat), sum_f_R0 An (S N) = sum_f_R0 An N + An (S N)forall (An : nat -> R) (k : R) (N : nat), 0 <= k -> (forall i : nat, An (S i) < k * An i) -> sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) Nforall (An : nat -> R) (k : R) (N : nat), 0 <= k -> (forall i : nat, An (S i) < k * An i) -> sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn:nat -> Rk:RH:0 <= kH0:forall i : nat, An (S i) < k * An isum_f_R0 An 0 <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) 0An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) Nsum_f_R0 An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) (S N)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) Nsum_f_R0 An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) (S N)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) Nsum_f_R0 An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) N + An (S N)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn 0%nat * sum_f_R0 (fun i : nat => k ^ i) N + An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) (S N)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) Nsum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn 0%nat * sum_f_R0 (fun i : nat => k ^ i) N + An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) (S N)An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn 0%nat * sum_f_R0 (fun i : nat => k ^ i) N + An (S N) <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) (S N)apply tech4; assumption. Qed.An:nat -> Rk:RN:natH:0 <= kH0:forall i : nat, An (S i) < k * An iHrecN:sum_f_R0 An N <= An 0%nat * sum_f_R0 (fun i : nat => k ^ i) NAn (S N) <= An 0%nat * k ^ S Nforall r1 r2 : R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2forall r1 r2 : R, r1 <> 0 -> r2 <> 0 -> r1 <> r2 -> / r1 <> / r2r1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2Falser1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2H3:r1 * / r1 = r1 * / r2Falser1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2H3:1 = r1 * / r2Falser1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2H3:1 = r1 * / r2H4:r2 * 1 = r2 * (r1 * / r2)Falser1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2H3:1 = r1 * / r2H4:r2 = r2 * r1 * / r2Falseelim H1; symmetry ; assumption. Qed.r1, r2:RH:r1 <> 0H0:r2 <> 0H1:r1 <> r2H2:/ r1 = / r2H3:1 = r1 * / r2H4:r2 = r1Falseforall (An Bn Cn : nat -> R) (N : nat), (forall i : nat, An i = Bn i - Cn i) -> sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn Nforall (An Bn Cn : nat -> R) (N : nat), (forall i : nat, An i = Bn i - Cn i) -> sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn NAn, Bn, Cn:nat -> RH:forall i : nat, An i = Bn i - Cn isum_f_R0 An 0 = sum_f_R0 Bn 0 - sum_f_R0 Cn 0An, Bn, Cn:nat -> RN:natH:forall i : nat, An i = Bn i - Cn iHrecN:sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn Nsum_f_R0 An (S N) = sum_f_R0 Bn (S N) - sum_f_R0 Cn (S N)do 3 rewrite tech5; rewrite HrecN; rewrite (H (S N)); ring. Qed.An, Bn, Cn:nat -> RN:natH:forall i : nat, An i = Bn i - Cn iHrecN:sum_f_R0 An N = sum_f_R0 Bn N - sum_f_R0 Cn Nsum_f_R0 An (S N) = sum_f_R0 Bn (S N) - sum_f_R0 Cn (S N)forall (An : nat -> R) (x l : R), Un_cv (fun N : nat => sum_f_R0 (fun i : nat => An i * x ^ i) N) l -> Pser An x lintros; unfold Pser; unfold infinite_sum; unfold Un_cv in H; assumption. Qed.forall (An : nat -> R) (x l : R), Un_cv (fun N : nat => sum_f_R0 (fun i : nat => An i * x ^ i) N) l -> Pser An x lforall (An : nat -> R) (N : nat) (x : R), x * sum_f_R0 An N = sum_f_R0 (fun i : nat => An i * x) Nforall (An : nat -> R) (N : nat) (x : R), x * sum_f_R0 An N = sum_f_R0 (fun i : nat => An i * x) NAn:nat -> Rx:Rx * sum_f_R0 An 0 = sum_f_R0 (fun i : nat => An i * x) 0An:nat -> RN:natx:RHrecN:x * sum_f_R0 An N = sum_f_R0 (fun i : nat => An i * x) Nx * sum_f_R0 An (S N) = sum_f_R0 (fun i : nat => An i * x) (S N)An:nat -> RN:natx:RHrecN:x * sum_f_R0 An N = sum_f_R0 (fun i : nat => An i * x) Nx * sum_f_R0 An (S N) = sum_f_R0 (fun i : nat => An i * x) (S N)rewrite Rmult_plus_distr_l; rewrite <- HrecN; ring. Qed.An:nat -> RN:natx:RHrecN:x * sum_f_R0 An N = sum_f_R0 (fun i : nat => An i * x) Nx * (sum_f_R0 An N + An (S N)) = sum_f_R0 (fun i : nat => An i * x) N + An (S N) * xforall (An : nat -> R) (N : nat), (0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)forall (An : nat -> R) (N : nat), (0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)An:nat -> RH:(0 < 0)%natsum_f_R0 An 0 = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred 0)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)sum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)sum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%nat -> sum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N) -> sum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natH2:S (Init.Nat.pred N) = Init.Nat.pred (S N)sum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (S (Init.Nat.pred N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natH2:S (Init.Nat.pred N) = Init.Nat.pred (S N)sum_f_R0 An N + An (S N) = An 0%nat + (sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N) + An (S (S (Init.Nat.pred N))))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natH2:S (Init.Nat.pred N) = Init.Nat.pred (S N)sum_f_R0 An N + An (S N) = An 0%nat + (sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N) + An (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natH2:S (Init.Nat.pred N) = Init.Nat.pred (S N)S N = S (S (Init.Nat.pred N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natH2:S (Init.Nat.pred N) = Init.Nat.pred (S N)S N = S (S (Init.Nat.pred N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:(0 < N)%natS (Init.Nat.pred N) = Init.Nat.pred (S N)An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> Rm:natH1:(0 < S m)%natH0:(0 < S m)%nat \/ S m = 0%natHrecN:(0 < S m)%nat -> sum_f_R0 An (S m) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S m))H:(0 < S (S m))%natS (Init.Nat.pred (S m)) = Init.Nat.pred (S (S m))An:nat -> RH1:(0 < 0)%natH0:(0 < 0)%nat \/ 0%nat = 0%natHrecN:(0 < 0)%nat -> sum_f_R0 An 0 = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred 0)H:(0 < 1)%natS (Init.Nat.pred 0) = Init.Nat.pred 1An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RH1:(0 < 0)%natH0:(0 < 0)%nat \/ 0%nat = 0%natHrecN:(0 < 0)%nat -> sum_f_R0 An 0 = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred 0)H:(0 < 1)%natS (Init.Nat.pred 0) = Init.Nat.pred 1An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H0:(0 < N)%nat \/ N = 0%natH1:N = 0%natsum_f_R0 An (S N) = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred (S N))An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)(0 < N)%nat \/ N = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)H1:0%nat = N(0 < 0)%nat \/ 0%nat = 0%natAn:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)m:natH1:(1 <= N)%natH0:m = N(0 < N)%nat \/ N = 0%natleft; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. Qed.An:nat -> RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> sum_f_R0 An N = An 0%nat + sum_f_R0 (fun i : nat => An (S i)) (Init.Nat.pred N)m:natH1:(1 <= N)%natH0:m = N(0 < N)%nat \/ N = 0%natforall (An Bn : nat -> R) (N : nat), sum_f_R0 (fun i : nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn Nforall (An Bn : nat -> R) (N : nat), sum_f_R0 (fun i : nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn NAn, Bn:nat -> Rsum_f_R0 (fun i : nat => An i + Bn i) 0 = sum_f_R0 An 0 + sum_f_R0 Bn 0An, Bn:nat -> RN:natHrecN:sum_f_R0 (fun i : nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn Nsum_f_R0 (fun i : nat => An i + Bn i) (S N) = sum_f_R0 An (S N) + sum_f_R0 Bn (S N)do 3 rewrite tech5; rewrite HrecN; ring. Qed.An, Bn:nat -> RN:natHrecN:sum_f_R0 (fun i : nat => An i + Bn i) N = sum_f_R0 An N + sum_f_R0 Bn Nsum_f_R0 (fun i : nat => An i + Bn i) (S N) = sum_f_R0 An (S N) + sum_f_R0 Bn (S N)forall (An Bn : nat -> R) (N : nat), (forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nforall (An Bn : nat -> R) (N : nat), (forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn NAn, Bn:nat -> RH:forall i : nat, (i <= 0)%nat -> An i = Bn isum_f_R0 An 0 = sum_f_R0 Bn 0An, Bn:nat -> RN:natH:forall i : nat, (i <= S N)%nat -> An i = Bn iHrecN:(forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nsum_f_R0 An (S N) = sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall i : nat, (i <= S N)%nat -> An i = Bn iHrecN:(forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nsum_f_R0 An (S N) = sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall i : nat, (i <= S N)%nat -> An i = Bn iHrecN:(forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nsum_f_R0 Bn N + An (S N) = sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall i : nat, (i <= S N)%nat -> An i = Bn iHrecN:(forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nforall i : nat, (i <= N)%nat -> An i = Bn iintros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ]. Qed. (* Unicity of the limit defined by convergent series *)An, Bn:nat -> RN:natH:forall i : nat, (i <= S N)%nat -> An i = Bn iHrecN:(forall i : nat, (i <= N)%nat -> An i = Bn i) -> sum_f_R0 An N = sum_f_R0 Bn Nforall i : nat, (i <= N)%nat -> An i = Bn iforall (An : nat -> R) (l1 l2 : R), infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2forall (An : nat -> R) (l1 l2 : R), infinite_sum An l1 -> infinite_sum An l2 -> l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsl1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 = l2l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%nat -> l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%nat -> (N >= x0)%nat -> l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 -> l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2) * Rabs (/ 2) + Rabs (l1 - l2) * Rabs (/ 2)l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2) * Rabs (/ 2) + Rabs (l1 - l2) * Rabs (/ 2)Rabs (/ 2) = / 2 -> l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2) * Rabs (/ 2) + Rabs (l1 - l2) * Rabs (/ 2)Rabs (/ 2) = / 2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2)H12:Rabs (/ 2) = / 2H13:forall r1 : R, r1 = r1 * / 2 + r1 * / 2l1 = l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2) * Rabs (/ 2) + Rabs (l1 - l2) * Rabs (/ 2)Rabs (/ 2) = / 2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)H9:Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2H10:R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2) + Rabs ((l1 - l2) / 2)H11:Rabs (l1 - l2) < Rabs (l1 - l2) * Rabs (/ 2) + Rabs (l1 - l2) * Rabs (/ 2)Rabs (/ 2) = / 2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= R_dist (sum_f_R0 An N) l1 + R_dist (sum_f_R0 An N) l2An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - l2) <= Rabs (l1 - sum_f_R0 An N) + Rabs (sum_f_R0 An N - l2)An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:natH5:(N >= x)%natH6:(N >= x0)%natH7:R_dist (sum_f_R0 An N) l1 < Rabs ((l1 - l2) / 2)H8:R_dist (sum_f_R0 An N) l2 < Rabs ((l1 - l2) / 2)Rabs (l1 - sum_f_R0 An N + (sum_f_R0 An N - l2)) <= Rabs (l1 - sum_f_R0 An N) + Rabs (sum_f_R0 An N - l2)An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2H2:0 < Rabs ((l1 - l2) / 2)x:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l1 < Rabs ((l1 - l2) / 2)x0:natH4:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) l2 < Rabs ((l1 - l2) / 2)N:=Nat.max x0 x:nat(N >= x0)%natAn:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2(l1 - l2) / 2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2l1 - l2 <> 0An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2/ 2 <> 0apply Rinv_neq_0_compat; discrR. Qed.An:nat -> Rl1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:l1 <> l2/ 2 <> 0forall (An Bn : nat -> R) (N : nat), sum_f_R0 (fun i : nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn Nforall (An Bn : nat -> R) (N : nat), sum_f_R0 (fun i : nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn NAn, Bn:nat -> Rsum_f_R0 (fun i : nat => An i - Bn i) 0 = sum_f_R0 An 0 - sum_f_R0 Bn 0An, Bn:nat -> RN:natHrecN:sum_f_R0 (fun i : nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn Nsum_f_R0 (fun i : nat => An i - Bn i) (S N) = sum_f_R0 An (S N) - sum_f_R0 Bn (S N)do 3 rewrite tech5; rewrite HrecN; ring. Qed.An, Bn:nat -> RN:natHrecN:sum_f_R0 (fun i : nat => An i - Bn i) N = sum_f_R0 An N - sum_f_R0 Bn Nsum_f_R0 (fun i : nat => An i - Bn i) (S N) = sum_f_R0 An (S N) - sum_f_R0 Bn (S N)forall (An : nat -> R) (N : nat), sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)forall (An : nat -> R) (N : nat), sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)An:nat -> RN:natsum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)An:nat -> Rsum_f_R0 (fun l : nat => An (2 * l)%nat) 1 + sum_f_R0 (fun l : nat => An (S (2 * l))) 0 = sum_f_R0 An (2 * 1)An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S (S N)) + sum_f_R0 (fun l : nat => An (S (2 * l))) (S N) = sum_f_R0 An (2 * S (S N))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S (S N)) + sum_f_R0 (fun l : nat => An (S (2 * l))) (S N) = sum_f_R0 An (2 * S (S N))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (2 * S (S N))%nat + sum_f_R0 (fun l : nat => An (S (2 * l))) (S N) = sum_f_R0 An (2 * S (S N))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (2 * S (S N))%nat + (sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N))) = sum_f_R0 An (2 * S (S N))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (S (S (2 * S N))) + (sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N))) = sum_f_R0 An (S (S (2 * S N)))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)S (S (2 * S N)) = (2 * S (S N))%natAn:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (S (S (2 * S N))) + (sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N))) = sum_f_R0 An (S (2 * S N)) + An (S (S (2 * S N)))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)S (S (2 * S N)) = (2 * S (S N))%natAn:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (S (S (2 * S N))) + (sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N))) = sum_f_R0 An (2 * S N) + An (S (2 * S N)) + An (S (S (2 * S N)))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)S (S (2 * S N)) = (2 * S (S N))%natAn:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + An (S (S (2 * S N))) + (sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N))) = sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N + An (S (2 * S N)) + An (S (S (2 * S N)))An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)S (S (2 * S N)) = (2 * S (S N))%natring. Qed.An:nat -> RN:natHrecN:sum_f_R0 (fun l : nat => An (2 * l)%nat) (S N) + sum_f_R0 (fun l : nat => An (S (2 * l))) N = sum_f_R0 An (2 * S N)S (S (2 * S N)) = (2 * S (S N))%natforall (An Bn : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nforall (An Bn : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn NAn, Bn:nat -> RN:natH:forall n : nat, (n <= N)%nat -> An n <= Bn nsum_f_R0 An N <= sum_f_R0 Bn NAn, Bn:nat -> RH:forall n : nat, (n <= 0)%nat -> An n <= Bn nsum_f_R0 An 0 <= sum_f_R0 Bn 0An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An (S N) <= sum_f_R0 Bn (S N)An, Bn:nat -> RH:forall n : nat, (n <= 0)%nat -> An n <= Bn n(0 <= 0)%natAn, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An (S N) <= sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An (S N) <= sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + An (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + An (S N) <= sum_f_R0 An N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn NAn (S N) <= Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn N(S N <= S N)%natAn, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn NBn (S N) + sum_f_R0 An N <= Bn (S N) + sum_f_R0 Bn NAn, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N <= sum_f_R0 Bn NAn, Bn:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n <= Bn nHrecN:(forall n : nat, (n <= N)%nat -> An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nforall n : nat, (n <= N)%nat -> An n <= Bn napply le_trans with N; [ assumption | apply le_n_Sn ]. Qed.An, Bn:nat -> RN:natH:forall n0 : nat, (n0 <= S N)%nat -> An n0 <= Bn n0HrecN:(forall n0 : nat, (n0 <= N)%nat -> An n0 <= Bn n0) -> sum_f_R0 An N <= sum_f_R0 Bn Nn:natH0:(n <= N)%nat(n <= S N)%natforall (An : nat -> R) (N : nat), Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) Nforall (An : nat -> R) (N : nat), Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NAn:nat -> RN:natRabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NAn:nat -> RRabs (sum_f_R0 An 0) <= sum_f_R0 (fun l : nat => Rabs (An l)) 0An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) (S N)An:nat -> RRabs (An 0%nat) <= Rabs (An 0%nat)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) (S N)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) (S N)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An N + An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) N + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An N + An (S N)) <= Rabs (sum_f_R0 An N) + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An N) + Rabs (An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) N + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An N) + Rabs (An (S N)) <= sum_f_R0 (fun l : nat => Rabs (An l)) N + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (An (S N)) + Rabs (sum_f_R0 An N) <= Rabs (An (S N)) + sum_f_R0 (fun l : nat => Rabs (An l)) Napply HrecN. Qed.An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) NRabs (sum_f_R0 An N) <= sum_f_R0 (fun l : nat => Rabs (An l)) Nforall (x : R) (N : nat), sum_f_R0 (fun _ : nat => x) N = x * INR (S N)forall (x : R) (N : nat), sum_f_R0 (fun _ : nat => x) N = x * INR (S N)x:RN:natsum_f_R0 (fun _ : nat => x) N = x * INR (S N)x:Rsum_f_R0 (fun _ : nat => x) 0 = x * INR 1x:RN:natHrecN:sum_f_R0 (fun _ : nat => x) N = x * INR (S N)sum_f_R0 (fun _ : nat => x) (S N) = x * INR (S (S N))x:RN:natHrecN:sum_f_R0 (fun _ : nat => x) N = x * INR (S N)sum_f_R0 (fun _ : nat => x) (S N) = x * INR (S (S N))rewrite HrecN; repeat rewrite S_INR; ring. Qed. (**********)x:RN:natHrecN:sum_f_R0 (fun _ : nat => x) N = x * INR (S N)sum_f_R0 (fun _ : nat => x) N + x = x * INR (S (S N))forall (An Bn : nat -> R) (N : nat), (forall n : nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn Nforall (An Bn : nat -> R) (N : nat), (forall n : nat, An n <= Bn n) -> sum_f_R0 An N <= sum_f_R0 Bn NAn, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nsum_f_R0 An N <= sum_f_R0 Bn NAn, Bn:nat -> RH:forall n : nat, An n <= Bn nsum_f_R0 An 0 <= sum_f_R0 Bn 0An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An (S N) <= sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An (S N) <= sum_f_R0 Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + An (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + An (S N) <= sum_f_R0 An N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn Nsum_f_R0 An N + Bn (S N) <= sum_f_R0 Bn N + Bn (S N)apply Rplus_le_compat_l; apply HrecN. Qed. (**********)An, Bn:nat -> RN:natH:forall n : nat, An n <= Bn nHrecN:sum_f_R0 An N <= sum_f_R0 Bn NBn (S N) + sum_f_R0 An N <= Bn (S N) + sum_f_R0 Bn Nforall (An : nat -> R) (N : nat), Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) Nforall (An : nat -> R) (N : nat), Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NAn:nat -> RN:natRabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NAn:nat -> RRabs (sum_f_R0 An 0) <= sum_f_R0 (fun i : nat => Rabs (An i)) 0An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) (S N)An:nat -> RRabs (An 0%nat) <= Rabs (An 0%nat)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) (S N)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) (S N)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An N + An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) N + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An N + An (S N)) <= Rabs (sum_f_R0 An N) + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An N) + Rabs (An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) N + Rabs (An (S N))An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (sum_f_R0 An N) + Rabs (An (S N)) <= sum_f_R0 (fun i : nat => Rabs (An i)) N + Rabs (An (S N))apply Rplus_le_compat_l; apply HrecN. Qed. (**********)An:nat -> RN:natHrecN:Rabs (sum_f_R0 An N) <= sum_f_R0 (fun i : nat => Rabs (An i)) NRabs (An (S N)) + Rabs (sum_f_R0 An N) <= Rabs (An (S N)) + sum_f_R0 (fun i : nat => Rabs (An i)) Nforall (An : nat -> R) (N : nat), (forall n : nat, 0 <= An n) -> 0 <= sum_f_R0 An Nforall (An : nat -> R) (N : nat), (forall n : nat, 0 <= An n) -> 0 <= sum_f_R0 An NAn:nat -> RN:natH:forall n : nat, 0 <= An n0 <= sum_f_R0 An NAn:nat -> RH:forall n : nat, 0 <= An n0 <= sum_f_R0 An 0An:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= sum_f_R0 An (S N)An:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= sum_f_R0 An (S N)An:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= sum_f_R0 An N + An (S N)An:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= sum_f_R0 An NAn:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= An (S N)apply H. Qed. (* Cauchy's criterion for series *) Definition Cauchy_crit_series (An:nat -> R) : Prop := Cauchy_crit (fun N:nat => sum_f_R0 An N). (* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *)An:nat -> RN:natH:forall n : nat, 0 <= An nHrecN:0 <= sum_f_R0 An N0 <= An (S N)forall An : nat -> R, Cauchy_crit_series (fun i : nat => Rabs (An i)) -> Cauchy_crit_series Anforall An : nat -> R, Cauchy_crit_series (fun i : nat => Rabs (An i)) -> Cauchy_crit_series Anforall An : nat -> R, (forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < eps) -> forall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < eps0eps:RH0:eps > 0exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < eps0eps:RH0:eps > 0x:natH1:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < epsexists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < eps0eps:RH0:eps > 0x:natH1:forall n m : nat, (n >= x)%nat -> (m >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < epsforall n m : nat, (n >= x)%nat -> (m >= x)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natH4:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natH4:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natH4:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natH4:R_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m) < epsAn:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natR_dist (sum_f_R0 An n) (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) n + sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 An n - (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n))) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) n - (sum_f_R0 (fun i : nat => Rabs (An i)) n + sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 An n + - (sum_f_R0 An n + sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n))) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) n + - (sum_f_R0 (fun i : nat => Rabs (An i)) n + sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 An n + (- sum_f_R0 An n + - sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n))) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) n + (- sum_f_R0 (fun i : nat => Rabs (An i)) n + - sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 An n + - sum_f_R0 An n + - sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) n + - sum_f_R0 (fun i : nat => Rabs (An i)) n + - sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (0 + - sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= Rabs (0 + - sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (- sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= Rabs (- sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natRabs (sum_f_R0 (fun i : nat => An (S n + i)%nat) (m - S n)) <= sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natBn:=fun i : nat => An (S n + i)%nat:nat -> RRabs (sum_f_R0 Bn (m - S n)) <= sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natBn:=fun i : nat => An (S n + i)%nat:nat -> RRabs (sum_f_R0 Bn (m - S n)) <= sum_f_R0 (fun i : nat => Rabs (Bn i)) (m - S n)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natBn:=fun i : nat => An (S n + i)%nat:nat -> R(fun i : nat => Rabs (Bn i)) = (fun i : nat => Rabs (An (S n + i)%nat))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natBn:=fun i : nat => An (S n + i)%nat:nat -> R(fun i : nat => Rabs (Bn i)) = (fun i : nat => Rabs (An (S n + i)%nat))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natsum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%nat0 <= sum_f_R0 (fun i : nat => Rabs (An (S n + i)%nat)) (m - S n)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(n < m)%natforall n0 : nat, 0 <= Rabs (An (S n + n0)%nat)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natR_dist (sum_f_R0 An m) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natRabs (sum_f_R0 An m - sum_f_R0 An m) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) m - sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n m0 : nat, (n >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n m0 : nat, (n >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsm:natH2, H3:(m >= x)%natRabs 0 <= Rabs 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natR_dist (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) (sum_f_R0 An m) <= R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) m + sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m)) (sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) - sum_f_R0 An m) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) m + sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) - sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 An m + sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + - sum_f_R0 An m) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) m + sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + - sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 An m + (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + - sum_f_R0 An m)) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) m + (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + - sum_f_R0 (fun i : nat => Rabs (An i)) m))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + - sum_f_R0 An m + sum_f_R0 An m) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An i)) m + (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + - sum_f_R0 (fun i : nat => Rabs (An i)) m))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + - sum_f_R0 An m + sum_f_R0 An m) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + - sum_f_R0 (fun i : nat => Rabs (An i)) m + sum_f_R0 (fun i : nat => Rabs (An i)) m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + (- sum_f_R0 An m + sum_f_R0 An m)) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + (- sum_f_R0 (fun i : nat => Rabs (An i)) m + sum_f_R0 (fun i : nat => Rabs (An i)) m))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m) + 0) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) + 0)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) <= Rabs (sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natRabs (sum_f_R0 (fun i : nat => An (S m + i)%nat) (n - S m)) <= sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natBn:=fun i : nat => An (S m + i)%nat:nat -> RRabs (sum_f_R0 Bn (n - S m)) <= sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natBn:=fun i : nat => An (S m + i)%nat:nat -> RRabs (sum_f_R0 Bn (n - S m)) <= sum_f_R0 (fun i : nat => Rabs (Bn i)) (n - S m)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natBn:=fun i : nat => An (S m + i)%nat:nat -> R(fun i : nat => Rabs (Bn i)) = (fun i : nat => Rabs (An (S m + i)%nat))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natBn:=fun i : nat => An (S m + i)%nat:nat -> R(fun i : nat => Rabs (Bn i)) = (fun i : nat => Rabs (An (S m + i)%nat))An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natsum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m) >= 0An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%nat0 <= sum_f_R0 (fun i : nat => Rabs (An (S m + i)%nat)) (n - S m)intro; apply Rabs_pos. Qed. (**********)An:nat -> RH:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 m0 : nat, (n0 >= N)%nat -> (m0 >= N)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < eps0eps:RH0:eps > 0x:natH1:forall n0 m0 : nat, (n0 >= x)%nat -> (m0 >= x)%nat -> R_dist (sum_f_R0 (fun i : nat => Rabs (An i)) n0) (sum_f_R0 (fun i : nat => Rabs (An i)) m0) < epsn, m:natH2:(n >= x)%natH3:(m >= x)%natl:(m < n)%natforall n0 : nat, 0 <= Rabs (An (S m + n0)%nat)forall An : nat -> R, {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l} -> Cauchy_crit_series Anforall An : nat -> R, {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l} -> Cauchy_crit_series AnAn:nat -> Rx:Rp:Un_cv (fun N : nat => sum_f_R0 An N) xCauchy_crit_series AnAn:nat -> Rx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < epsCauchy_crit_series AnAn:nat -> Rx:Rp:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < epsforall eps : R, eps > 0 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 0exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2 -> exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 0H0:0 < eps / 2exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) x < eps / 2exists N : nat, forall n m : nat, (n >= N)%nat -> (m >= N)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n : nat, (n >= x0)%nat -> R_dist (sum_f_R0 An n) x < eps / 2forall n m : nat, (n >= x0)%nat -> (m >= x0)%nat -> R_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) (sum_f_R0 An m) <= R_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) xAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (sum_f_R0 An n - sum_f_R0 An m) <= Rabs (sum_f_R0 An n - x) + Rabs (sum_f_R0 An m - x)An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (sum_f_R0 An n - x + - (sum_f_R0 An m - x)) <= Rabs (sum_f_R0 An n - x) + Rabs (sum_f_R0 An m - x)An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natRabs (sum_f_R0 An n - x + - (sum_f_R0 An m - x)) <= Rabs (sum_f_R0 An n - x) + Rabs (- (sum_f_R0 An m - x))An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x + R_dist (sum_f_R0 An m) x < eps / 2 + eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%nateps / 2 + eps / 2 <= epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An n) x < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An m) x < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%nateps / 2 + eps / 2 <= epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%natR_dist (sum_f_R0 An m) x < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%nateps / 2 + eps / 2 <= epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n0 : nat, (n0 >= N)%nat -> R_dist (sum_f_R0 An n0) x < eps0eps:RH:eps > 0H0:0 < eps / 2x0:natH1:forall n0 : nat, (n0 >= x0)%nat -> R_dist (sum_f_R0 An n0) x < eps / 2n, m:natH2:(n >= x0)%natH3:(m >= x0)%nateps / 2 + eps / 2 <= epsAn:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2unfold Rdiv; apply Rmult_lt_0_compat; [ assumption | apply Rinv_0_lt_compat; prove_sup0 ]. Qed.An:nat -> Rx:Rp:forall eps0 : R, eps0 > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) x < eps0eps:RH:eps > 00 < eps / 2forall An : nat -> R, Cauchy_crit_series An -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}forall An : nat -> R, Cauchy_crit_series An -> {l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}An:nat -> RH:Cauchy_crit_series An{l : R | Un_cv (fun N : nat => sum_f_R0 An N) l}An:nat -> RH:Cauchy_crit_series AnCauchy_crit (fun N : nat => sum_f_R0 An N)exact H. Qed. (**********)An:nat -> RH:Cauchy_crit (fun N : nat => sum_f_R0 An N)Cauchy_crit (fun N : nat => sum_f_R0 An N)forall (An : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0forall (An : nat -> R) (N : nat), (forall n : nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0An:nat -> RH:forall n : nat, (n <= 0)%nat -> An n = 0sum_f_R0 An 0 = 0An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n = 0HrecN:(forall n : nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0sum_f_R0 An (S N) = 0rewrite tech5; rewrite HrecN; [ rewrite Rplus_0_l; apply H; apply le_n | intros; apply H; apply le_trans with N; [ assumption | apply le_n_Sn ] ]. Qed. Definition SP (fn:nat -> R -> R) (N:nat) (x:R) : R := sum_f_R0 (fun k:nat => fn k x) N. (**********)An:nat -> RN:natH:forall n : nat, (n <= S N)%nat -> An n = 0HrecN:(forall n : nat, (n <= N)%nat -> An n = 0) -> sum_f_R0 An N = 0sum_f_R0 An (S N) = 0forall (An : nat -> R) (N : nat) (l : R), Un_cv (fun n : nat => sum_f_R0 An n) l -> (forall n : nat, 0 <= An n) -> sum_f_R0 An N <= lforall (An : nat -> R) (N : nat) (l : R), Un_cv (fun n : nat => sum_f_R0 An n) l -> (forall n : nat, 0 <= An n) -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHlt:sum_f_R0 An N < lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHeq:sum_f_R0 An N = lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHeq:sum_f_R0 An N = lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n) -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)sum_f_R0 An N <= lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - l -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%nat -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - lsum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0 -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 < l1 -> sum_f_R0 An N <= lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 < l1An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 < l1An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0- l + sum_f_R0 An N0 < - l + l1An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:sum_f_R0 An N0 - l < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 + - l < l1 + - lAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0sum_f_R0 An N0 - l >= 0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0l + 0 <= l + (sum_f_R0 An N0 - l)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0l <= l1An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0l1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:Rabs (sum_f_R0 An N0 - l) < l1 - lH6:l1 <= sum_f_R0 An N0l1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - ll1 <= sum_f_R0 An N0An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - lUn_growing (fun k : nat => sum_f_R0 An k)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - l(N0 >= N)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:natH4:(N0 >= x)%natH5:R_dist (sum_f_R0 An N0) l < l1 - l(N0 >= N)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N1 : nat, forall n : nat, (n >= N1)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)H2:0 < l1 - lx:natH3:forall n : nat, (n >= x)%nat -> R_dist (sum_f_R0 An n) l < l1 - lN0:=Nat.max x N:nat(N0 >= x)%natAn:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)An:nat -> RN:natl:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l < epsH0:forall n : nat, 0 <= An nl1:=sum_f_R0 An N:RHgt:l1 > lH1:Un_growing (fun n : nat => sum_f_R0 An n)0 < l1 - lAn:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)unfold Un_growing; intro; simpl; pattern (sum_f_R0 An n) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; apply H0. Qed. (**********)An:nat -> RN:natl:RH:Un_cv (fun n : nat => sum_f_R0 An n) lH0:forall n : nat, 0 <= An nHgt:sum_f_R0 An N > lUn_growing (fun n : nat => sum_f_R0 An n)forall (An : nat -> R) (fn : nat -> R -> R) (x l1 l2 : R), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2forall (An : nat -> R) (fn : nat -> R -> R) (x l1 l2 : R), Un_cv (fun n : nat => SP fn n x) l1 -> Un_cv (fun n : nat => sum_f_R0 An n) l2 -> (forall n : nat, Rabs (fn n x) <= An n) -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHlt:Rabs l1 < l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHeq:Rabs l1 = l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHeq:Rabs l1 = l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2(forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0) -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2 -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> R_dist (SP fn n x) l1 < (Rabs l1 - l2) / 2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> R_dist (SP fn n x) l1 < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> R_dist (sum_f_R0 An n) l2 < (Rabs l1 - l2) / 2Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> R_dist (SP fn n x) l1 < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> R_dist (sum_f_R0 An n) l2 < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2 -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2 -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2 -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x) -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2H9:(Rabs l1 + l2) / 2 < Rabs (SP fn N x)sum_f_R0 An N < Rabs (SP fn N x) -> Rabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2H9:(Rabs l1 + l2) / 2 < Rabs (SP fn N x)sum_f_R0 An N < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2H9:(Rabs l1 + l2) / 2 < Rabs (SP fn N x)H10:sum_f_R0 An N < Rabs (SP fn N x)H11:Rabs (SP fn N x) <= sum_f_R0 An NRabs l1 <= l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2H9:(Rabs l1 + l2) / 2 < Rabs (SP fn N x)sum_f_R0 An N < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2H9:(Rabs l1 + l2) / 2 < Rabs (SP fn N x)sum_f_R0 An N < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0(Rabs l1 + l2) / 2 < Rabs l1An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 00 < 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 02 * ((Rabs l1 + l2) / 2) < 2 * Rabs l1An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 02 * ((Rabs l1 + l2) / 2) < 2 * Rabs l1An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0(Rabs l1 + l2) * 1 < 2 * Rabs l1An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 02 <> 0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 02 <> 0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hlt:Rabs l1 - Rabs (SP fn N x) < 0Rabs l1 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 + l2) / 2 < Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0(Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2 < (Rabs l1 - l2) / 2 - Rabs (SP fn N x) + Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2 - Rabs (SP fn N x) + Rabs (SP fn N x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0Rabs l1 - Rabs (SP fn N x) = (Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs l1 - Rabs (SP fn N x) < (Rabs l1 - l2) / 2H8:sum_f_R0 An N < (Rabs l1 + l2) / 2Hge:Rabs l1 - Rabs (SP fn N x) >= 0Rabs l1 - Rabs (SP fn N x) = (Rabs l1 - l2) / 2 - Rabs (SP fn N x) + (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 0sum_f_R0 An N < l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 0l2 < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 0l2 < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 00 < 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 02 * l2 < 2 * ((Rabs l1 + l2) / 2)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 02 * l2 < 2 * ((Rabs l1 + l2) / 2)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 0l2 + l2 < (Rabs l1 + l2) * 1An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 02 <> 0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hlt:sum_f_R0 An N - l2 < 02 <> 0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0sum_f_R0 An N < (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:sum_f_R0 An N - l2 < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0- l2 + sum_f_R0 An N < - l2 + (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:sum_f_R0 An N - l2 < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0- l2 + sum_f_R0 An N < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:sum_f_R0 An N - l2 < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0(Rabs l1 - l2) / 2 = - l2 + (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:sum_f_R0 An N - l2 < (Rabs l1 - l2) / 2H7:Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2Hge:sum_f_R0 An N - l2 >= 0(Rabs l1 - l2) / 2 = - l2 + (Rabs l1 + l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (Rabs l1 - Rabs (SP fn N x)) <= Rabs (SP fn N x - l1)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (SP fn N x - l1) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natH6:Rabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2Rabs (SP fn N x - l1) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (SP fn n x) l1 < epsH0:forall eps : R, eps > 0 -> exists N0 : nat, forall n : nat, (n >= N0)%nat -> R_dist (sum_f_R0 An n) l2 < epsH1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0H3:0 < (Rabs l1 - l2) / 2Na:natH4:forall n : nat, (n >= Na)%nat -> Rabs (SP fn n x - l1) < (Rabs l1 - l2) / 2Nb:natH5:forall n : nat, (n >= Nb)%nat -> Rabs (sum_f_R0 An n - l2) < (Rabs l1 - l2) / 2N:=Nat.max Na Nb:natRabs (sum_f_R0 An N - l2) < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < (Rabs l1 - l2) / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < Rabs l1 - l2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0l2 + 0 < l2 + (Rabs l1 - l2)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2H2:forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n00 < / 2An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2forall n0 : nat, Rabs (SP fn n0 x) <= sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2Rabs (SP fn 0 x) <= sum_f_R0 An 0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (SP fn (S n0) x) <= sum_f_R0 An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (SP fn (S n0) x) <= sum_f_R0 An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (sum_f_R0 (fun k : nat => fn k x) n0 + fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (sum_f_R0 (fun k : nat => fn k x) n0 + fn (S n0) x) <= Rabs (sum_f_R0 (fun k : nat => fn k x) n0) + Rabs (fn (S n0) x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (sum_f_R0 (fun k : nat => fn k x) n0) + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (sum_f_R0 (fun k : nat => fn k x) n0) + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (sum_f_R0 (fun k : nat => fn k x) n0) + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + Rabs (fn (S n0) x)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0sum_f_R0 An n0 + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0Rabs (fn (S n0) x) + Rabs (sum_f_R0 (fun k : nat => fn k x) n0) <= Rabs (fn (S n0) x) + sum_f_R0 An n0An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0sum_f_R0 An n0 + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)apply Rplus_le_compat_l; apply H1. Qed.An:nat -> Rfn:nat -> R -> Rx, l1, l2:RH:Un_cv (fun n : nat => SP fn n x) l1H0:Un_cv (fun n : nat => sum_f_R0 An n) l2H1:forall n : nat, Rabs (fn n x) <= An nHgt:Rabs l1 > l2n0:natHrecn0:Rabs (SP fn n0 x) <= sum_f_R0 An n0sum_f_R0 An n0 + Rabs (fn (S n0) x) <= sum_f_R0 An n0 + An (S n0)