Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import Rsqrt_def. Local Open Scope R_scope.
Definition sqrt (x:R) : R := match Rcase_abs x with | left _ => 0 | right a => Rsqrt (mknonnegreal x (Rge_le _ _ a)) end.forall x : R, 0 <= sqrt xforall x : R, 0 <= sqrt xx:R0 <= sqrt xx:R0 <= match Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} endx:RH:x < 00 <= 0x:RH:x >= 00 <= Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 H |}apply Rsqrt_positivity. Qed.x:RH:x >= 00 <= Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 H |}forall x : R, 0 <= x -> 0 <= sqrt xforall x : R, 0 <= x -> 0 <= sqrt xapply sqrt_pos. Qed.x:R0 <= sqrt xforall x : R, 0 <= x -> sqrt x * sqrt x = xforall x : R, 0 <= x -> sqrt x * sqrt x = xx:RH:0 <= xsqrt x * sqrt x = xx:RH:0 <= xmatch Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} end * match Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} end = xx:RH:0 <= xHlt:x < 00 * 0 = xx:RH:0 <= xHge:x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hge |} * Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hge |} = xrewrite Rsqrt_Rsqrt; reflexivity. Qed.x:RH:0 <= xHge:x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hge |} * Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hge |} = xsqrt 0 = 0apply Rsqr_eq_0; unfold Rsqr; apply sqrt_sqrt; right; reflexivity. Qed.sqrt 0 = 0sqrt 1 = 1apply (Rsqr_inj (sqrt 1) 1); [ apply sqrt_positivity; left | left | unfold Rsqr; rewrite sqrt_sqrt; [ ring | left ] ]; apply Rlt_0_1. Qed.sqrt 1 = 1forall x : R, 0 <= x -> sqrt x = 0 -> x = 0forall x : R, 0 <= x -> sqrt x = 0 -> x = 0x:RH:0 <= xH0:sqrt x = 0(sqrt x)² = 0 -> x = 0x:RH:0 <= xH0:sqrt x = 0(sqrt x)² = 0rewrite H0; apply Rsqr_0. Qed.x:RH:0 <= xH0:sqrt x = 0(sqrt x)² = 0forall x y : R, 0 <= x -> 0 <= y -> sqrt x = y -> y * y = xintros; rewrite <- H1; apply (sqrt_sqrt x H). Qed.forall x y : R, 0 <= x -> 0 <= y -> sqrt x = y -> y * y = xforall x y : R, 0 <= x -> 0 <= y -> y * y = x -> sqrt x = yintros; apply Rsqr_inj; [ apply (sqrt_positivity x H) | assumption | unfold Rsqr; rewrite H1; apply (sqrt_sqrt x H) ]. Qed.forall x y : R, 0 <= x -> 0 <= y -> y * y = x -> sqrt x = yforall x : R, 0 <= x -> sqrt x * sqrt x = xintros; apply (sqrt_sqrt x H). Qed.forall x : R, 0 <= x -> sqrt x * sqrt x = xforall x : R, 0 <= x -> sqrt (x * x) = xintros; apply (Rsqr_inj (sqrt (Rsqr x)) x (sqrt_positivity (Rsqr x) (Rle_0_sqr x)) H); unfold Rsqr; apply (sqrt_sqrt (Rsqr x) (Rle_0_sqr x)). Qed.forall x : R, 0 <= x -> sqrt (x * x) = xforall x : R, 0 <= x -> sqrt x² = xintros; unfold Rsqr; apply sqrt_square; assumption. Qed.forall x : R, 0 <= x -> sqrt x² = xintros; simpl; rewrite Rmult_1_r, sqrt_square; auto. Qed.forall x : R, 0 <= x -> sqrt (x ^ 2) = xforall x : R, sqrt x² = Rabs xintro x; rewrite Rsqr_abs; apply sqrt_Rsqr; apply Rabs_pos. Qed.forall x : R, sqrt x² = Rabs xforall x : R, 0 <= x -> (sqrt x)² = xintros x H1; unfold Rsqr; apply (sqrt_sqrt x H1). Qed.forall x : R, 0 <= x -> (sqrt x)² = xforall x y : R, 0 <= x -> sqrt (x * y) = sqrt x * sqrt yforall x y : R, 0 <= x -> sqrt (x * y) = sqrt x * sqrt yx, y:RHx:0 <= xsqrt (x * y) = sqrt x * sqrt yx, y:RHx:0 <= xsqrt (x * y) = sqrt x * match Rcase_abs y with | left _ => 0 | right a => Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 a |} endx, y:RHx:0 <= xHy:y < 0sqrt (x * y) = sqrt x * 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0sqrt (x * y) = 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0match Rcase_abs (x * y) with | left _ => 0 | right a => Rsqrt {| nonneg := x * y; cond_nonneg := Rge_le (x * y) 0 a |} end = 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0Hxy:x * y < 00 = 0x, y:RHx':0 < xHy:y < 0Hxy:x * y >= 0Rsqrt {| nonneg := x * y; cond_nonneg := Rge_le (x * y) 0 Hxy |} = 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0Hxy:x * y >= 0Rsqrt {| nonneg := x * y; cond_nonneg := Rge_le (x * y) 0 Hxy |} = 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0Hxy:x * y >= 0x * y < 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 < xHy:y < 0Hxy:x * y >= 0x * y < x * 0x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 = xHy:y < 0sqrt (x * y) = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx':0 = xHy:y < 0sqrt 0 = 0x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 0sqrt (x * y) = sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 00 <= sqrt (x * y)x, y:RHx:0 <= xHy:y >= 00 <= sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 0(sqrt (x * y))² = (sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 00 <= sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 0(sqrt (x * y))² = (sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 00 <= sqrt xx, y:RHx:0 <= xHy:y >= 00 <= Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 0(sqrt (x * y))² = (sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 00 <= Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |}x, y:RHx:0 <= xHy:y >= 0(sqrt (x * y))² = (sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 0(sqrt (x * y))² = (sqrt x * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 0x * y = x * (Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})²x, y:RHx:0 <= xHy:y >= 00 <= xx, y:RHx:0 <= xHy:y >= 00 <= x * yx, y:RHx:0 <= xHy:y >= 0x * y = x * (Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |} * Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |})x, y:RHx:0 <= xHy:y >= 00 <= xx, y:RHx:0 <= xHy:y >= 00 <= x * yx, y:RHx:0 <= xHy:y >= 00 <= xx, y:RHx:0 <= xHy:y >= 00 <= x * yx, y:RHx:0 <= xHy:y >= 00 <= x * yx, y:RHx:0 <= xHy:y >= 00 <= xx, y:RHx:0 <= xHy:y >= 00 <= ynow apply Rge_le. Qed.x, y:RHx:0 <= xHy:y >= 00 <= yforall x y : R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt yforall x y : R, 0 <= x -> 0 <= y -> sqrt (x * y) = sqrt x * sqrt ynow apply sqrt_mult_alt. Qed.x, y:RHx:0 <= xsqrt (x * y) = sqrt x * sqrt yforall x : R, 0 < x -> 0 < sqrt xintros x H1; apply Rsqr_incrst_0; [ rewrite Rsqr_0; rewrite Rsqr_sqrt; [ assumption | left; assumption ] | right; reflexivity | apply (sqrt_positivity x (Rlt_le 0 x H1)) ]. Qed.forall x : R, 0 < x -> 0 < sqrt xforall x y : R, 0 < x -> 0 < y -> 0 < x * / yx, y:RH:0 < xH0:0 < y0 < x * / yx, y:RH:0 < xH0:0 < yx * 0 < x * / yx, y:RH:0 < xH0:0 < yx * 0 = 0ring. Qed.x, y:RH:0 < xH0:0 < yx * 0 = 0forall x y : R, 0 <= x -> 0 < y -> 0 <= x * / yx, y:RH:0 <= xH0:0 < y0 <= x * / yx, y:RH:0 <= xH0:0 < yH1:0 < x0 <= x * / yx, y:RH:0 <= xH0:0 < yH1:0 = x0 <= x * / yx, y:RH:0 <= xH0:0 < yH1:0 < x0 < x * / yx, y:RH:0 <= xH0:0 < yH1:0 = x0 <= x * / yx, y:RH:0 <= xH0:0 < yH1:0 = x0 <= x * / yred; right; ring. Qed.x, y:RH:0 <= xH0:0 < yH1:0 = x0 <= 0 * / yforall x y : R, 0 < y -> sqrt (x / y) = sqrt x / sqrt yforall x y : R, 0 < y -> sqrt (x / y) = sqrt x / sqrt yx, y:RHy:0 < ysqrt (x / y) = sqrt x / sqrt yx, y:RHy:0 < ysqrt (x / y) = match Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} end / sqrt yx, y:RHy:0 < yHx:x < 0sqrt (x / y) = 0 / sqrt yx, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0sqrt (x * / y) = 0 * / sqrt yx, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0sqrt (x * / y) = 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0match Rcase_abs (x * / y) with | left _ => 0 | right a => Rsqrt {| nonneg := x * / y; cond_nonneg := Rge_le (x * / y) 0 a |} end = 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y < 00 = 0x, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0Rsqrt {| nonneg := x * / y; cond_nonneg := Rge_le (x * / y) 0 Hxy |} = 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0Rsqrt {| nonneg := x * / y; cond_nonneg := Rge_le (x * / y) 0 Hxy |} = 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0x * / y < 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 00 < yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0x * / y * y < 0 * yx, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0x * / y * y < 0 * yx, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0x < 0x, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0y <> 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x < 0Hxy:x * / y >= 0y <> 0x, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x >= 0sqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} / sqrt yx, y:RHy:0 < yHx:x >= 0Hx':=Rge_le x 0 Hx:0 <= xsqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt yx, y:RHy:0 < yHx:x >= 0Hx':0 <= xsqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt yx, y:RHy:0 < yHx':0 <= xsqrt (x / y) = Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt yx, y:RHy:0 < yHx':0 <= x0 <= sqrt (x / y)x, y:RHy:0 < yHx':0 <= x0 <= Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt yx, y:RHy:0 < yHx':0 <= x(sqrt (x / y))² = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt y)²x, y:RHy:0 < yHx':0 <= x0 <= Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt yx, y:RHy:0 < yHx':0 <= x(sqrt (x / y))² = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt y)²x, y:RHy:0 < yHx':0 <= x0 <= Rsqrt {| nonneg := x; cond_nonneg := Hx' |}x, y:RHy:0 < yHx':0 <= x0 < sqrt yx, y:RHy:0 < yHx':0 <= x(sqrt (x / y))² = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt y)²x, y:RHy:0 < yHx':0 <= x0 < sqrt yx, y:RHy:0 < yHx':0 <= x(sqrt (x / y))² = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt y)²x, y:RHy:0 < yHx':0 <= x(sqrt (x / y))² = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / sqrt y)²x, y:RHy:0 < yHx':0 <= xx / y = (Rsqrt {| nonneg := x; cond_nonneg := Hx' |})² / yx, y:RHy:0 < yHx':0 <= x0 <= yx, y:RHy:0 < yHx':0 <= x0 <= x / yx, y:RHy:0 < yHx':0 <= xsqrt y <> 0x, y:RHy:0 < yHx':0 <= xx / y = Rsqrt {| nonneg := x; cond_nonneg := Hx' |} * Rsqrt {| nonneg := x; cond_nonneg := Hx' |} / yx, y:RHy:0 < yHx':0 <= x0 <= yx, y:RHy:0 < yHx':0 <= x0 <= x / yx, y:RHy:0 < yHx':0 <= xsqrt y <> 0x, y:RHy:0 < yHx':0 <= x0 <= yx, y:RHy:0 < yHx':0 <= x0 <= x / yx, y:RHy:0 < yHx':0 <= xsqrt y <> 0x, y:RHy:0 < yHx':0 <= x0 <= x / yx, y:RHy:0 < yHx':0 <= xsqrt y <> 0x, y:RHy:0 < yHx':0 <= xsqrt y <> 0now apply sqrt_lt_R0. Qed.x, y:RHy:0 < yHx':0 <= xsqrt y > 0forall x y : R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt yforall x y : R, 0 <= x -> 0 < y -> sqrt (x / y) = sqrt x / sqrt ynow apply sqrt_div_alt. Qed.x, y:RH:0 < ysqrt (x / y) = sqrt x / sqrt yforall x y : R, sqrt x < sqrt y -> x < yforall x y : R, sqrt x < sqrt y -> x < yx, y:Rsqrt x < sqrt y -> x < yx, y:Rsqrt x < match Rcase_abs y with | left _ => 0 | right a => Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 a |} end -> x < yx, y:RHy:y < 0sqrt x < 0 -> x < yx, y:RHy:y >= 0sqrt x < Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |} -> x < yx, y:RHy:y < 0Hx:sqrt x < 0x < yx, y:RHy:y >= 0sqrt x < Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |} -> x < yx, y:RHy:y < 0Hx:sqrt x < 00 <= sqrt xx, y:RHy:y >= 0sqrt x < Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |} -> x < yx, y:RHy:y >= 0sqrt x < Rsqrt {| nonneg := y; cond_nonneg := Rge_le y 0 Hy |} -> x < yx, y:RHy:y >= 0Hy':=Rge_le y 0 Hy:0 <= ysqrt x < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy:y >= 0Hy':0 <= ysqrt x < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= ysqrt x < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= ymatch Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} end < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= yHx:x < 00 < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= yHx:x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= yHx:x < 0x < yx, y:RHy':0 <= yHx:x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= yHx:x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} -> x < yx, y:RHy':0 <= yHx:x >= 0Hxy:Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} < Rsqrt {| nonneg := y; cond_nonneg := Hy' |}x < yx, y:RHy':0 <= yHx:x >= 0Hxy:(Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |})² < (Rsqrt {| nonneg := y; cond_nonneg := Hy' |})²x < ynow rewrite 2!Rsqrt_Rsqrt in Hxy. Qed.x, y:RHy':0 <= yHx:x >= 0Hxy:Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} * Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx |} < Rsqrt {| nonneg := y; cond_nonneg := Hy' |} * Rsqrt {| nonneg := y; cond_nonneg := Hy' |}x < yforall x y : R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < yforall x y : R, 0 <= x -> 0 <= y -> sqrt x < sqrt y -> x < yapply sqrt_lt_0_alt. Qed.x, y:Rsqrt x < sqrt y -> x < yforall x y : R, 0 <= x < y -> sqrt x < sqrt yforall x y : R, 0 <= x < y -> sqrt x < sqrt yx, y:RHx:0 <= xHxy:x < ysqrt x < sqrt yx, y:RHx:0 <= xHxy:x < y(sqrt x)² < (sqrt y)²x, y:RHx:0 <= xHxy:x < yx < yx, y:RHx:0 <= xHxy:x < y0 <= yx, y:RHx:0 <= xHxy:x < y0 <= xx, y:RHx:0 <= xHxy:x < y0 <= yx, y:RHx:0 <= xHxy:x < y0 <= xx, y:RHx:0 <= xHxy:x < y0 < yx, y:RHx:0 <= xHxy:x < y0 <= xexact Hx. Qed.x, y:RHx:0 <= xHxy:x < y0 <= xforall x y : R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt yforall x y : R, 0 <= x -> 0 <= y -> x < y -> sqrt x < sqrt yx, y:RHx:0 <= xHxy:x < ysqrt x < sqrt ynow split. Qed.x, y:RHx:0 <= xHxy:x < y0 <= x < yforall x y : R, 0 <= x -> 0 <= y -> sqrt x <= sqrt y -> x <= yintros x y H1 H2 H3; generalize (Rsqr_incr_1 (sqrt x) (sqrt y) H3 (sqrt_positivity x H1) (sqrt_positivity y H2)); intro H4; rewrite (Rsqr_sqrt x H1) in H4; rewrite (Rsqr_sqrt y H2) in H4; assumption. Qed.forall x y : R, 0 <= x -> 0 <= y -> sqrt x <= sqrt y -> x <= yforall x y : R, x <= y -> sqrt x <= sqrt yforall x y : R, x <= y -> sqrt x <= sqrt yx, y:RHxy:x < ysqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:0 <= xsqrt x <= sqrt yx, y:RHxy:x < yHx:x < 0sqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:0 <= xsqrt x < sqrt yx, y:RHxy:x < yHx:x < 0sqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:0 <= x0 <= x < yx, y:RHxy:x < yHx:x < 0sqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:x < 0sqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:x < 0match Rcase_abs x with | left _ => 0 | right a => Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 a |} end <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx, Hx':x < 00 <= sqrt yx, y:RHxy:x < yHx:x < 0Hx':x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx' |} <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x < yHx:x < 0Hx':x >= 0Rsqrt {| nonneg := x; cond_nonneg := Rge_le x 0 Hx' |} <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yx, y:RHxy:x = ysqrt x <= sqrt yapply Rle_refl. Qed.x, y:RHxy:x = ysqrt y <= sqrt yforall x y : R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt yforall x y : R, 0 <= x -> 0 <= y -> x <= y -> sqrt x <= sqrt ynow apply sqrt_le_1_alt. Qed.x, y:RHxy:x <= ysqrt x <= sqrt yforall x y : R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = yforall x y : R, 0 <= x -> 0 <= y -> sqrt x = sqrt y -> x = yx, y:RH:0 <= xH0:0 <= yH1:sqrt x = sqrt y(sqrt x)² = (sqrt y)² -> x = yx, y:RH:0 <= xH0:0 <= yH1:sqrt x = sqrt y(sqrt x)² = (sqrt y)²rewrite H1; reflexivity. Qed.x, y:RH:0 <= xH0:0 <= yH1:sqrt x = sqrt y(sqrt x)² = (sqrt y)²forall x : R, 1 < x -> sqrt x < xforall x : R, 1 < x -> sqrt x < xx:RHx:1 < xsqrt x < xx:RHx:1 < xHx1:0 < xsqrt x < xx:RHx:1 < xHx1:0 < xHx2:0 <= xsqrt x < xx:RHx:1 < xHx1:0 < xHx2:0 <= x(sqrt x)² < x²x:RHx:1 < xHx1:0 < xHx2:0 <= x0 <= sqrt xx:RHx:1 < xHx1:0 < xHx2:0 <= xx < x²x:RHx:1 < xHx1:0 < xHx2:0 <= x0 <= sqrt xx:RHx:1 < xHx1:0 < xHx2:0 <= x1 * x < x²x:RHx:1 < xHx1:0 < xHx2:0 <= x0 <= sqrt xapply sqrt_pos. Qed.x:RHx:1 < xHx1:0 < xHx2:0 <= x0 <= sqrt xforall x : R, 0 <= x -> 1 < x -> sqrt x < xforall x : R, 0 <= x -> 1 < x -> sqrt x < xapply sqrt_less_alt. Qed.x:R1 < x -> sqrt x < xforall x : R, 0 < x -> x < 1 -> x < sqrt xintros x H1 H2; generalize (sqrt_lt_1 x 1 (Rlt_le 0 x H1) (Rlt_le 0 1 Rlt_0_1) H2); intro H3; rewrite sqrt_1 in H3; generalize (Rmult_ne (sqrt x)); intro H4; elim H4; intros H5 H6; rewrite <- H5; pattern x at 1; rewrite <- (sqrt_def x (Rlt_le 0 x H1)); apply (Rmult_lt_compat_l (sqrt x) (sqrt x) 1 (sqrt_lt_R0 x H1) H3). Qed.forall x : R, 0 < x -> x < 1 -> x < sqrt xforall a b c d : R, a * c + b * d <= sqrt (a² + b²) * sqrt (c² + d²)intros a b c d; apply Rsqr_incr_0_var; [ rewrite Rsqr_mult; repeat rewrite Rsqr_sqrt; unfold Rsqr; [ replace ((a * c + b * d) * (a * c + b * d)) with (a * a * c * c + b * b * d * d + 2 * a * b * c * d); [ replace ((a * a + b * b) * (c * c + d * d)) with (a * a * c * c + b * b * d * d + (a * a * d * d + b * b * c * c)); [ apply Rplus_le_compat_l; replace (a * a * d * d + b * b * c * c) with (2 * a * b * c * d + (a * a * d * d + b * b * c * c - 2 * a * b * c * d)); [ pattern (2 * a * b * c * d) at 1; rewrite <- Rplus_0_r; apply Rplus_le_compat_l; replace (a * a * d * d + b * b * c * c - 2 * a * b * c * d) with (Rsqr (a * d - b * c)); [ apply Rle_0_sqr | unfold Rsqr; ring ] | ring ] | ring ] | ring ] | apply (Rplus_le_le_0_compat (Rsqr c) (Rsqr d) (Rle_0_sqr c) (Rle_0_sqr d)) | apply (Rplus_le_le_0_compat (Rsqr a) (Rsqr b) (Rle_0_sqr a) (Rle_0_sqr b)) ] | apply Rmult_le_pos; apply sqrt_positivity; apply Rplus_le_le_0_compat; apply Rle_0_sqr ]. Qed. (************************************************************)forall a b c d : R, a * c + b * d <= sqrt (a² + b²) * sqrt (c² + d²)
(************************************************************) Definition Delta (a:nonzeroreal) (b c:R) : R := Rsqr b - 4 * a * c. Definition Delta_is_pos (a:nonzeroreal) (b c:R) : Prop := 0 <= Delta a b c. Definition sol_x1 (a:nonzeroreal) (b c:R) : R := (- b + sqrt (Delta a b c)) / (2 * a). Definition sol_x2 (a:nonzeroreal) (b c:R) : R := (- b - sqrt (Delta a b c)) / (2 * a).forall (a : nonzeroreal) (b c x : R), Delta_is_pos a b c -> x = sol_x1 a b c \/ x = sol_x2 a b c -> a * x² + b * x + c = 0forall (a : nonzeroreal) (b c x : R), Delta_is_pos a b c -> x = sol_x1 a b c \/ x = sol_x2 a b c -> a * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca * (sol_x1 a b c)² + b * sol_x1 a b c + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca * ((- b + sqrt (b * b - 4 * a * c)) / (2 * a) * ((- b + sqrt (b * b - 4 * a * c)) / (2 * a))) + b * ((- b + sqrt (b * b - 4 * a * c)) / (2 * a)) + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b c(4 * a * c - b ^ 2 + sqrt (b * b - 4 * a * c) ^ 2) / (4 * a) = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b c(4 * a * c - b ^ 2 + (b * b - 4 * a * c)) / (4 * a) = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x1 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * x² + b * x + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * (sol_x2 a b c)² + b * sol_x2 a b c + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca * ((- b - sqrt (b * b - 4 * a * c)) / (2 * a) * ((- b - sqrt (b * b - 4 * a * c)) / (2 * a))) + b * ((- b - sqrt (b * b - 4 * a * c)) / (2 * a)) + c = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b c(4 * a * c - b ^ 2 + sqrt (b * b - 4 * a * c) ^ 2) / (4 * a) = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b c(4 * a * c - b ^ 2 + (b * b - 4 * a * c)) / (4 * a) = 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b c0 <= b * b - 4 * a * ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0apply a. Qed.a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:x = sol_x1 a b c \/ x = sol_x2 a b cH1:x = sol_x2 a b ca <> 0forall (a : nonzeroreal) (b c x : R), Delta_is_pos a b c -> a * x² + b * x + c = 0 -> x = sol_x1 a b c \/ x = sol_x2 a b cforall (a : nonzeroreal) (b c x : R), Delta_is_pos a b c -> a * x² + b * x + c = 0 -> x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b c -> a * (x + b / (2 * a))² = - ((4 * a * c - b²) / (4 * a)) -> x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b ca * (x + b / (2 * a))² = (b² - 4 * a * c) / (4 * a) -> x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (Delta a b c / (4 * a)) -> x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))² -> x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a)x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a)x = - (b / (2 * a)) + sqrt (Delta a b c) / (2 * a) -> x = (- b + sqrt (Delta a b c)) / (2 * a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a)x = - (b / (2 * a)) + (x + b / (2 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a)x = - (b / (2 * a)) + (x + b / (2 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = sol_x1 a b c \/ x = sol_x2 a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = - (b / (2 * a)) + - (sqrt (Delta a b c) / (2 * a)) -> x = (- b - sqrt (Delta a b c)) / (2 * a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = - (b / (2 * a)) + (x + b / (2 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)H3:(x + b / (2 * a))² = (sqrt (Delta a b c) / (2 * a))²H4:x + b / (2 * a) = sqrt (Delta a b c) / (2 * a) \/ x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))H5:x + b / (2 * a) = - (sqrt (Delta a b c) / (2 * a))x = - (b / (2 * a)) + (x + b / (2 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c) / (2 * a))² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(sqrt (Delta a b c))² / (2 * a)² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c / (2 * a)² = / a * (Delta a b c / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = / a * (Delta a b c * / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = / a * (Delta a b c * / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = Delta a b c * / (4 * a) * / aa:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = Delta a b c * (/ (4 * a) * / a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = Delta a b c * / (4 * a * a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)4 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)Delta a b c * / (2 * a)² = Delta a b c * / (2 * a)²a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(2 * a)² = 4 * a * aa:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)4 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(2 * a)² = 4 * a * aa:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)4 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)4 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)0 <= Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)2 * a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = / a * (a * (x + b / (2 * a))²)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)(x + b / (2 * a))² = 1 * (x + b / (2 * a))²a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b cH2:a * (x + b / (2 * a))² = Delta a b c / (4 * a)a <> 0a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) / (4 * a) = - ((4 * a * c - b²) / (4 * a))a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) * / (4 * a) = - (4 * a * c - b²) * / (4 * a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b ca:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0H1:b² - 4 * a * c = Delta a b c(b² - 4 * a * c) * / (4 * a) = (b² - 4 * a * c) * / (4 * a)a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b creflexivity. Qed.a:nonzerorealb, c, x:RH:Delta_is_pos a b cH0:(4 * a * c - b²) / (4 * a) + a * (x + b / (2 * a))² = 0b² - 4 * a * c = Delta a b c