Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Export Rlimit.
Require Export Rderiv.
Local Open Scope R_scope.
Implicit Type f : R -> R.

(****************************************************)

Basic operations on functions

(****************************************************)
Definition plus_fct f1 f2 (x:R) : R := f1 x + f2 x.
Definition opp_fct f (x:R) : R := - f x.
Definition mult_fct f1 f2 (x:R) : R := f1 x * f2 x.
Definition mult_real_fct (a:R) f (x:R) : R := a * f x.
Definition minus_fct f1 f2 (x:R) : R := f1 x - f2 x.
Definition div_fct f1 f2 (x:R) : R := f1 x / f2 x.
Definition div_real_fct (a:R) f (x:R) : R := a / f x.
Definition comp f1 f2 (x:R) : R := f1 (f2 x).
Definition inv_fct f (x:R) : R := / f x.

Declare Scope Rfun_scope.
Delimit Scope Rfun_scope with F.

Arguments plus_fct (f1 f2)%F x%R.
Arguments mult_fct (f1 f2)%F x%R.
Arguments minus_fct (f1 f2)%F x%R.
Arguments div_fct (f1 f2)%F x%R.
Arguments inv_fct f%F x%R.
Arguments opp_fct f%F x%R.
Arguments mult_real_fct a%R f%F x%R.
Arguments div_real_fct a%R f%F x%R.
Arguments comp (f1 f2)%F x%R.

Infix "+" := plus_fct : Rfun_scope.
Notation "- x" := (opp_fct x) : Rfun_scope.
Infix "*" := mult_fct : Rfun_scope.
Infix "-" := minus_fct : Rfun_scope.
Infix "/" := div_fct : Rfun_scope.
Local Notation "f1 'o' f2" := (comp f1 f2)
  (at level 20, right associativity) : Rfun_scope.
Notation "/ x" := (inv_fct x) : Rfun_scope.

Definition fct_cte (a x:R) : R := a.
Definition id (x:R) := x.

(****************************************************)

Variations of functions

(****************************************************)
Definition increasing f : Prop := forall x y:R, x <= y -> f x <= f y.
Definition decreasing f : Prop := forall x y:R, x <= y -> f y <= f x.
Definition strict_increasing f : Prop := forall x y:R, x < y -> f x < f y.
Definition strict_decreasing f : Prop := forall x y:R, x < y -> f y < f x.
Definition constant f : Prop := forall x y:R, f x = f y.

(**********)
Definition no_cond (x:R) : Prop := True.

(**********)
Definition constant_D_eq f (D:R -> Prop) (c:R) : Prop :=
  forall x:R, D x -> f x = c.

(***************************************************)

Definition of continuity as a limit

(***************************************************)

(**********)
Definition continuity_pt f (x0:R) : Prop := continue_in f no_cond x0.
Definition continuity f : Prop := forall x:R, continuity_pt f x.

Arguments continuity_pt f%F x0%R.
Arguments continuity f%F.


forall (f g : R -> R) (a x : R), 0 < a -> (forall y : R, R_dist y x < a -> f y = g y) -> continuity_pt f x -> continuity_pt g x
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps)
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps

exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps)
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps

Rmin a a' > 0
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < eps
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
r:a <= a'

a > 0
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
n:~ a <= a'
a' > 0
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < eps
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
n:~ a <= a'

a' > 0
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < eps
f, g:R -> R
a, x:R
a0:0 < a
q:forall y : R, R_dist y x < a -> f y = g y
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps

forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < eps
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'

dist R_met (f y) (f x) < eps
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'
R_dist x x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'
R_dist y x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'

D_x no_cond x y /\ dist R_met y x < a'
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'
R_dist x x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'
R_dist y x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'

R_dist x x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'
R_dist y x < a
f, g:R -> R
a, x:R
a0:0 < a
q:forall y0 : R, R_dist y0 x < a -> f y0 = g y0
cf:continuity_pt f x
eps:R
ep:eps > 0
a':R
a'p:a' > 0
Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < eps
y:Base R_met
cy:D_x no_cond x y /\ dist R_met y x < Rmin a a'

R_dist y x < a
apply Rlt_le_trans with (Rmin a a');[ | apply Rmin_l]; tauto. Qed. (**********)

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0
unfold continuity_pt, plus_fct; unfold continue_in; intros; apply limit_plus; assumption. Qed.

forall (f : R -> R) (x0 : R), continuity_pt f x0 -> continuity_pt (- f) x0

forall (f : R -> R) (x0 : R), continuity_pt f x0 -> continuity_pt (- f) x0
unfold continuity_pt, opp_fct; unfold continue_in; intros; apply limit_Ropp; assumption. Qed.

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0
unfold continuity_pt, minus_fct; unfold continue_in; intros; apply limit_minus; assumption. Qed.

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0
unfold continuity_pt, mult_fct; unfold continue_in; intros; apply limit_mul; assumption. Qed.

forall (f : R -> R) (x0 : R), constant f -> continuity_pt f x0

forall (f : R -> R) (x0 : R), constant f -> continuity_pt f x0
unfold constant, continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; intros; exists 1; split; [ apply Rlt_0_1 | intros; generalize (H x x0); intro; rewrite H2; simpl; rewrite R_dist_eq; assumption ]. Qed.

forall (f : R -> R) (a x0 : R), continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0

forall (f : R -> R) (a x0 : R), continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0

limit1_in (fun _ : R => a) (D_x no_cond x0) a x0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
limit1_in f (D_x no_cond x0) (f x0) x0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
eps:R
H0:eps > 0

1 > 0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
eps:R
H0:eps > 0
forall x : Base R_met, D_x no_cond x0 x /\ dist R_met x x0 < 1 -> dist R_met a a < eps
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
limit1_in f (D_x no_cond x0) (f x0) x0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
eps:R
H0:eps > 0

forall x : Base R_met, D_x no_cond x0 x /\ dist R_met x x0 < 1 -> dist R_met a a < eps
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0
limit1_in f (D_x no_cond x0) (f x0) x0
f:R -> R
a, x0:R
H:limit1_in f (D_x no_cond x0) (f x0) x0

limit1_in f (D_x no_cond x0) (f x0) x0
assumption. Qed.

forall (f : R -> R) (x0 : R), continuity_pt f x0 -> f x0 <> 0 -> continuity_pt (/ f) x0

forall (f : R -> R) (x0 : R), continuity_pt f x0 -> f x0 <> 0 -> continuity_pt (/ f) x0
f:R -> R
x0:R
H:continuity_pt f x0
H0:f x0 <> 0

continuity_pt (/ f) x0
f:R -> R
x0:R
H:continuity_pt f x0
H0:f x0 <> 0

continuity_pt (fun x : R => / f x) x0
f:R -> R
x0:R
H:continuity_pt f x0
H0:f x0 <> 0
(fun x : R => / f x) = (/ f)%F
f:R -> R
x0:R
H:continuity_pt f x0
H0:f x0 <> 0

(fun x : R => / f x) = (/ f)%F
unfold inv_fct; reflexivity. Qed.

forall f1 f2 : R -> R, (f1 / f2)%F = (f1 * / f2)%F

forall f1 f2 : R -> R, (f1 / f2)%F = (f1 * / f2)%F
intros; reflexivity. Qed.

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> f2 x0 <> 0 -> continuity_pt (f1 / f2) x0

forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> f2 x0 <> 0 -> continuity_pt (f1 / f2) x0
intros; rewrite (div_eq_inv f1 f2); apply continuity_pt_mult; [ assumption | apply continuity_pt_inv; assumption ]. Qed.

forall (f1 f2 : R -> R) (x : R), continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) x

forall (f1 f2 : R -> R) (x : R), continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)

limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)

(limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x) -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x

limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x

limit1_in f1 (D_x no_cond x) ?l x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) ?l
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x

limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)

limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)

x0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)

x0 > 0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)

forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x = f1 x1

Rabs (f2 (f1 x1) - f2 (f1 x)) < eps
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
Rabs (f2 (f1 x1) - f2 (f1 x)) < eps
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1

Rabs (f2 (f1 x1) - f2 (f1 x)) < eps
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

(True /\ x <> x1) /\ True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

True /\ x <> x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

True
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
x <> x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

x <> x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
H9:True /\ x <> x1
H10:Rabs (x1 - x) < x0

x <> x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

True /\ f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

True
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

f1 x <> f1 x1
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x:R
H:limit1_in f1 (D_x no_cond x) (f1 x) x
H0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)
eps:R
H2:eps > 0
H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x0:R
H4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)
x1:R
H5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0
H6:f1 x <> f1 x1
H7:x0 > 0
H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps

Rabs (x1 - x) < x0
elim H5; intros; assumption. Qed. (**********)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 + f2)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 + f2)
unfold continuity; intros; apply (continuity_pt_plus f1 f2 x (H x) (H0 x)). Qed.

forall f : R -> R, continuity f -> continuity (- f)

forall f : R -> R, continuity f -> continuity (- f)
unfold continuity; intros; apply (continuity_pt_opp f x (H x)). Qed.

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 - f2)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 - f2)
unfold continuity; intros; apply (continuity_pt_minus f1 f2 x (H x) (H0 x)). Qed.

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 * f2)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 * f2)
unfold continuity; intros; apply (continuity_pt_mult f1 f2 x (H x) (H0 x)). Qed.

forall f : R -> R, constant f -> continuity f

forall f : R -> R, constant f -> continuity f
unfold continuity; intros; apply (continuity_pt_const f x H). Qed.

forall (f : R -> R) (a : R), continuity f -> continuity (mult_real_fct a f)

forall (f : R -> R) (a : R), continuity f -> continuity (mult_real_fct a f)
unfold continuity; intros; apply (continuity_pt_scal f a x (H x)). Qed.

forall f : R -> R, continuity f -> (forall x : R, f x <> 0) -> continuity (/ f)

forall f : R -> R, continuity f -> (forall x : R, f x <> 0) -> continuity (/ f)
unfold continuity; intros; apply (continuity_pt_inv f x (H x) (H0 x)). Qed.

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> (forall x : R, f2 x <> 0) -> continuity (f1 / f2)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> (forall x : R, f2 x <> 0) -> continuity (f1 / f2)
unfold continuity; intros; apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)). Qed.

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f2 o f1)

forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f2 o f1)
f1, f2:R -> R
H:forall x0 : R, continuity_pt f1 x0
H0:forall x0 : R, continuity_pt f2 x0
x:R

continuity_pt (f2 o f1) x
apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))). Qed. (*****************************************************)

Derivative's definition using Landau's kernel

(*****************************************************)

Definition derivable_pt_lim f (x l:R) : Prop :=
  forall eps:R,
    0 < eps ->
    exists delta : posreal,
      (forall h:R,
        h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps).

Definition derivable_pt_abs f (x l:R) : Prop := derivable_pt_lim f x l.

Definition derivable_pt f (x:R) := { l:R | derivable_pt_abs f x l }.
Definition derivable f := forall x:R, derivable_pt f x.

Definition derive_pt f (x:R) (pr:derivable_pt f x) := proj1_sig pr.
Definition derive f (pr:derivable f) (x:R) := derive_pt f x (pr x).

Arguments derivable_pt_lim f%F x%R l.
Arguments derivable_pt_abs f%F (x l)%R.
Arguments derivable_pt f%F x%R.
Arguments derivable f%F.
Arguments derive_pt f%F x%R pr.
Arguments derive f%F pr x.

Definition antiderivative f (g:R -> R) (a b:R) : Prop :=
  (forall x:R,
    a <= x <= b ->  exists pr : derivable_pt g x, f x = derive_pt g x pr) /\
  a <= b.
(**************************************)

Class of differential functions

(**************************************)
Record Differential : Type := mkDifferential
  {d1 :> R -> R; cond_diff : derivable d1}.

Record Differential_D2 : Type := mkDifferential_D2
  {d2 :> R -> R;
    cond_D1 : derivable d2;
    cond_D2 : derivable (derive d2 cond_D1)}.

(**********)

forall (f : R -> R) (x l1 l2 : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0 -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0 -> l1 = l2

forall (f : R -> R) (x l1 l2 : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0 -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0 -> l1 = l2
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0

adhDa (fun h : R => h <> 0) 0
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

alp / 2 <> 0 /\ R_dist (alp / 2) 0 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

alp / 2 <> 0
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
R_dist (alp / 2) 0 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

alp <> 0
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 <> 0
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
R_dist (alp / 2) 0 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

/ 2 <> 0
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
R_dist (alp / 2) 0 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

R_dist (alp / 2) 0 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

Rabs alp * Rabs (/ 2) < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

Rabs alp * / 2 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 = Rabs (/ 2)
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

alp * / 2 < alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
alp = Rabs alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 = Rabs (/ 2)
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

0 < 2
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
2 * (alp * / 2) < 2 * alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
alp = Rabs alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 = Rabs (/ 2)
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

2 * (alp * / 2) < 2 * alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
alp = Rabs alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 = Rabs (/ 2)
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

alp = Rabs alp
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0
/ 2 = Rabs (/ 2)
f:R -> R
x, l1, l2:R
H:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
alp:R
H1:alp > 0

/ 2 = Rabs (/ 2)
symmetry ; apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat; prove_sup0. Qed.

forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0

forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : Base R_met, x0 <> 0 /\ dist R_met x0 0 < alp -> dist R_met ((f (x + x0) - f x) / x0) l < eps)
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps

exists alp : R, alp > 0 /\ (forall x0 : Base R_met, x0 <> 0 /\ dist R_met x0 0 < alp -> dist R_met ((f (x + x0) - f x) / x0) l < eps)
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps

exists alp : R, alp > 0 /\ (forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < alp -> dist R_met ((f (x + x1) - f x) / x1) l < eps)
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps

x0 > 0 /\ (forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < eps)
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps

x0 > 0
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps
forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < eps
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps

forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < eps
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps
x1:R
H3:x1 <> 0 /\ Rabs (x1 - 0) < x0

Rabs ((f (x + x1) - f x) / x1 - l) < eps
f:R -> R
x, l:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0
eps:R
H0:eps > 0
H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
x0:posreal
H2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < eps
x1:R
H3:x1 <> 0 /\ Rabs (x1 - 0) < x0
H4:x1 <> 0
H5:Rabs (x1 - 0) < x0

Rabs ((f (x + x1) - f x) / x1 - l) < eps
apply H2; [ assumption | unfold Rminus in H5; rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5; assumption ]. Qed.

forall (f : R -> R) (x l : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0 -> derivable_pt_lim f x l

forall (f : R -> R) (x l : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0 -> derivable_pt_lim f x l
f:R -> R
x, l:R
H:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist ((f (x + x0) - f x) / x0) l < eps0)
eps:R
H0:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
f:R -> R
x, l:R
H:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist ((f (x + x0) - f x) / x0) l < eps0)
eps:R
H0:0 < eps

forall x0 : R, x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
f:R -> R
x, l:R
H:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)
eps:R
H0:0 < eps
x0:R
H1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)
H2:x0 > 0
H3:forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps
f:R -> R
x, l:R
H:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)
eps:R
H0:0 < eps
x0:R
H1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)
H2:x0 > 0
H3:forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps

forall h : R, h <> 0 -> Rabs h < {| pos := x0; cond_pos := H2 |} -> Rabs ((f (x + h) - f x) / h - l) < eps
f:R -> R
x, l:R
H:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)
eps:R
H0:0 < eps
x0:R
H1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)
H2:x0 > 0
H3:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f (x + x1) - f x) / x1 - l) < eps
h:R
H4:h <> 0
H5:Rabs h < x0

h <> 0 /\ Rabs (h - 0) < x0
split; [ assumption | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assumption ]. Qed.

forall (f : R -> R) (x l1 l2 : R), derivable_pt_lim f x l1 -> derivable_pt_lim f x l2 -> l1 = l2

forall (f : R -> R) (x l1 l2 : R), derivable_pt_lim f x l1 -> derivable_pt_lim f x l2 -> l1 = l2
f:R -> R
x, l1, l2:R
H:derivable_pt_lim f x l1
H0:derivable_pt_lim f x l2

l1 = l2
f:R -> R
x, l1, l2:R
H:derivable_pt_lim f x l1
H0:derivable_pt_lim f x l2
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0

l1 = l2
f:R -> R
x, l1, l2:R
H:derivable_pt_lim f x l1
H0:derivable_pt_lim f x l2
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0

l1 = l2
f:R -> R
x, l1, l2:R
H:derivable_pt_lim f x l1
H0:derivable_pt_lim f x l2
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0
H3:l1 = l2

l1 = l2
assumption. Qed.

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l <-> derivable_pt_lim f x l

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l <-> derivable_pt_lim f x l
f:R -> R
x, l:R
pr:derivable_pt f x

derive_pt f x pr = l -> derivable_pt_lim f x l
f:R -> R
x, l:R
pr:derivable_pt f x
derivable_pt_lim f x l -> derive_pt f x pr = l
f:R -> R
x, l:R
pr:derivable_pt f x

derivable_pt_lim f x l -> derive_pt f x pr = l
f:R -> R
x, l:R
pr:derivable_pt f x
H:derivable_pt_lim f x l
H1:derivable_pt_lim f x (proj1_sig pr)

derive_pt f x pr = l
f:R -> R
x, l:R
pr:derivable_pt f x
H:derivable_pt_lim f x l
H1:derivable_pt_lim f x (proj1_sig pr)
H2:l = proj1_sig pr

derive_pt f x pr = l
f:R -> R
x, l:R
pr:derivable_pt f x
H:derivable_pt_lim f x l
H1:derivable_pt_lim f x (proj1_sig pr)
H2:l = proj1_sig pr

proj1_sig pr = l
symmetry ; assumption. Qed. (**********)

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derivable_pt_lim f x l -> derive_pt f x pr = l

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derivable_pt_lim f x l -> derive_pt f x pr = l
f:R -> R
x, l:R
pr:derivable_pt f x
H:derivable_pt_lim f x l
H0:derive_pt f x pr = l -> derivable_pt_lim f x l
H1:derivable_pt_lim f x l -> derive_pt f x pr = l

derive_pt f x pr = l
apply (H1 H). Qed. (**********)

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l -> derivable_pt_lim f x l

forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l -> derivable_pt_lim f x l
f:R -> R
x, l:R
pr:derivable_pt f x
H:derive_pt f x pr = l
H0:derive_pt f x pr = l -> derivable_pt_lim f x l
H1:derivable_pt_lim f x l -> derive_pt f x pr = l

derivable_pt_lim f x l
apply (H0 H). Qed. (**********************************************************************)

Equivalence of this definition with the one using limit concept

(**********************************************************************)

forall (f df : R -> R) (x : R) (pr : derivable_pt f x), D_in f df no_cond x <-> derive_pt f x pr = df x

forall (f df : R -> R) (x : R) (pr : derivable_pt f x), D_in f df no_cond x <-> derive_pt f x pr = df x
f, df:R -> R
x:R
pr:derivable_pt f x

D_in f df no_cond x -> derive_pt f x pr = df x
f, df:R -> R
x:R
pr:derivable_pt f x
derive_pt f x pr = df x -> D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)

derive_pt f x pr = df x
f, df:R -> R
x:R
pr:derivable_pt f x
derive_pt f x pr = df x -> D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)

derivable_pt_lim f x (df x)
f, df:R -> R
x:R
pr:derivable_pt f x
derive_pt f x pr = df x -> D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps
f, df:R -> R
x:R
pr:derivable_pt f x
derive_pt f x pr = df x -> D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x

derive_pt f x pr = df x -> D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x

D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)

D_in f df no_cond x
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps

alpha > 0
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps

forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0

x0 - x <> 0 -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
H8:x0 - x <> 0

Rabs ((f x0 - f x) / (x0 - x) - df x) < eps -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
H8:x0 - x <> 0
x0 = x + (x0 - x)
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
H8:x0 - x <> 0

x0 = x + (x0 - x)
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
pr:derivable_pt f x
H:derive_pt f x pr = df x
H0:derivable_pt_lim f x (df x)
eps:R
H1:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H3:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H4:no_cond x0 /\ x <> x0
H5:Rabs (x0 - x) < alpha
H6:no_cond x0
H7:x <> x0

x0 - x <> 0
auto with real. Qed.

forall (f df : R -> R) (x : R), D_in f df no_cond x <-> derivable_pt_lim f x (df x)

forall (f df : R -> R) (x : R), D_in f df no_cond x <-> derivable_pt_lim f x (df x)
f, df:R -> R
x:R

D_in f df no_cond x -> derivable_pt_lim f x (df x)
f, df:R -> R
x:R
derivable_pt_lim f x (df x) -> D_in f df no_cond x
f, df:R -> R
x:R
H:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)

derivable_pt_lim f x (df x)
f, df:R -> R
x:R
derivable_pt_lim f x (df x) -> D_in f df no_cond x
f, df:R -> R
x:R
H:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps
f, df:R -> R
x:R
derivable_pt_lim f x (df x) -> D_in f df no_cond x
f, df:R -> R
x:R

derivable_pt_lim f x (df x) -> D_in f df no_cond x
f, df:R -> R
x:R
H:derivable_pt_lim f x (df x)

D_in f df no_cond x
f, df:R -> R
x:R
H:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps

D_in f df no_cond x
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps

alpha > 0
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps

forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha

Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0

x0 - x <> 0 -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
H7:x0 - x <> 0

Rabs ((f x0 - f x) / (x0 - x) - df x) < eps -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
H7:x0 - x <> 0
x0 = x + (x0 - x)
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
H7:x0 - x <> 0

x0 = x + (x0 - x)
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0
x0 - x <> 0
f, df:R -> R
x:R
H:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0
eps:R
H0:eps > 0
alpha:posreal
H2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < eps
x0:R
H1:D_x no_cond x x0 /\ Rabs (x0 - x) < alpha
H3:no_cond x0 /\ x <> x0
H4:Rabs (x0 - x) < alpha
H5:no_cond x0
H6:x <> x0

x0 - x <> 0
auto with real. Qed. (* Extensionally equal functions have the same derivative. *)

forall (f g : R -> R) (x l : R), (forall z : R, f z = g z) -> derivable_pt_lim f x l -> derivable_pt_lim g x l
intros f g x l fg df e ep; destruct (df e ep) as [d pd]; exists d; intros h; rewrite <- !fg; apply pd. Qed. (* extensionally equal functions have the same derivative, locally. *)

forall (f g : R -> R) (x a b l : R), a < x < b -> (forall z : R, a < z < b -> f z = g z) -> derivable_pt_lim f x l -> derivable_pt_lim g x l
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < e

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < e

0 < Rmin d (Rmin (b - x) (x - a))
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

Rabs ((g (x + h) - g x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

Rabs ((f (x + h) - f x) / h - l) < e
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

Rabs h < d
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

- h < x - a
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

Rabs (- h) < x - a
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))

Rmin d (Rmin (b - x) (x - a)) <= x - a
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a

a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a

h < b - x
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a

Rabs h < b - x
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a

Rmin d (Rmin (b - x) (x - a)) <= b - x
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

a < x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

a < x + h
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

- h + a < - h + (x + h)
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

- h + a < x
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

- h + a + - a < x + - a
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

- h < x + - a
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x
x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

x + h < b
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

x + h + - x < b + - x
f, g:R -> R
x, a, b, l:R
axb:a < x < b
fg:forall z : R, a < z < b -> f z = g z
df:derivable_pt_lim f x l
e:R
ep:0 < e
d:posreal
pd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < e
d'h:0 < Rmin d (Rmin (b - x) (x - a))
h:R
hn0:h <> 0
cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))
H:- h < x - a
H0:h < b - x

h < b + - x
assumption. Qed. (***********************************)

derivability -> continuity

(***********************************)
(**********)

forall (f : R -> R) (x : R) (pr : derivable_pt f x), exists l : R, derive_pt f x pr = l

forall (f : R -> R) (x : R) (pr : derivable_pt f x), exists l : R, derive_pt f x pr = l
f:R -> R
x:R
pr:derivable_pt f x

derive_pt f x pr = proj1_sig pr
unfold derive_pt; reflexivity. Qed.

forall (f : R -> R) (x : R), derivable_pt f x -> continuity_pt f x

forall (f : R -> R) (x : R), derivable_pt f x -> continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l : R, derive_pt f x X = l

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l

l = fct_cte l x -> continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
H0:l = fct_cte l x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = fct_cte l x
H0:l = fct_cte l x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = fct_cte l x
H0:l = fct_cte l x
H2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = fct_cte l x
H0:l = fct_cte l x
H2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l x
H3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l x
H4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = fct_cte l x
H0:l = fct_cte l x
H2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l x
H3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l x
H4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond x
H5:D_in f (fct_cte l) no_cond x

continuity_pt f x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = fct_cte l x
H0:l = fct_cte l x
H2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l x
H3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l x
H4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond x
H5:D_in f (fct_cte l) no_cond x

continue_in f no_cond x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l
l = fct_cte l x
f:R -> R
x:R
X:derivable_pt f x
H:exists l0 : R, derive_pt f x X = l0
l:R
H1:derive_pt f x X = l

l = fct_cte l x
unfold fct_cte; reflexivity. Qed.

forall f : R -> R, derivable f -> continuity f

forall f : R -> R, derivable f -> continuity f
f:R -> R
X:forall x0 : R, derivable_pt f x0
x:R

continuity_pt f x
apply (derivable_continuous_pt f x (X x)). Qed. (****************************************************************)

Main rules

(****************************************************************)


forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2

derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2

limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0

limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

(forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h) -> limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h

limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h

limit1_in (fun x0 : R => (f1 (x + x0) - f1 x) / x0 + (f2 (x + x0) - f2 x) / x0) (fun h : R => h <> 0) (l1 + l2) 0 -> limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f1 x) / x0 + (f2 (x + x0) - f2 x) / x0 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) + f2 (x + x0) - (f1 x + f2 x)) / x0 - (l1 + l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps

x0 > 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps
forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps

forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h
intro; unfold Rdiv; ring. Qed.

forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l)

forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l)
f:R -> R
x, l:R
H:derivable_pt_lim f x l

derivable_pt_lim (- f) x (- l)
f:R -> R
x, l:R
H:derivable_pt_lim f x l

limit1_in (fun h : R => ((- f)%F (x + h) - (- f)%F x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0

limit1_in (fun h : R => ((- f)%F (x + h) - (- f)%F x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0

limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0

(forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)) -> limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)

limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)

limit1_in (fun x0 : R => - ((f (x + x0) - f x) / x0)) (fun h : R => h <> 0) (- l) 0 -> limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (- ((f (x + x0) - f x) / x0) - - l) < eps0)
eps:R
H3:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((- f (x + x0) - - f x) / x0 - - l) < eps)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)
H5:x0 > 0
H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)
H5:x0 > 0
H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps

x0 > 0
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)
H5:x0 > 0
H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps
forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)
eps:R
H3:eps > 0
x0:R
H4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)
H5:x0 > 0
H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps

forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0
forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
f:R -> R
x, l:R
H:derivable_pt_lim f x l
H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0

forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)
intro; unfold Rdiv; ring. Qed.

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 - f2) x (l1 - l2)

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2

derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2

limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0

limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

(forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) -> limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h

limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h

limit1_in (fun x0 : R => (f1 (x + x0) - f1 x) / x0 - (f2 (x + x0) - f2 x) / x0) (fun h : R => h <> 0) (l1 - l2) 0 -> limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f1 x) / x0 - (f2 (x + x0) - f2 x) / x0 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f2 (x + x0) - (f1 x - f2 x)) / x0 - (l1 - l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps

x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps

x0 > 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps
forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
H4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)
eps:R
H5:eps > 0
x0:R
H6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)
H7:x0 > 0
H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps

forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0
forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0
H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0

forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h
intro; unfold Rdiv; ring. Qed.

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)
H6:D_in f2 (fun _ : R => l2) no_cond x -> derivable_pt_lim f2 x l2
H7:derivable_pt_lim f2 x l2 -> D_in f2 (fun _ : R => l2) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)
H6:D_in f2 (fun _ : R => l2) no_cond x -> derivable_pt_lim f2 x l2
H7:derivable_pt_lim f2 x l2 -> D_in f2 (fun _ : R => l2) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x
H1:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x <-> derivable_pt_lim (f1 * f2) x ((fun _ : R => l1 * f2 x + f1 x * l2) x)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x
H1:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x <-> derivable_pt_lim (f1 * f2) x ((fun _ : R => l1 * f2 x + f1 x * l2) x)
H2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
H3:derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2) -> D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x
H2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x
H2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)

D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 x l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond x
H2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)

D_in (fun x0 : R => f1 x0 * f2 x0) (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x
apply (Dmult no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption. Qed.

forall a x : R, derivable_pt_lim (fct_cte a) x 0

forall a x : R, derivable_pt_lim (fct_cte a) x 0
a, x:R

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((a - a) / h - 0) < eps
intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus; rewrite Rplus_opp_r; unfold Rdiv; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed.

forall (f : R -> R) (a x l : R), derivable_pt_lim f x l -> derivable_pt_lim (mult_real_fct a f) x (a * l)

forall (f : R -> R) (a x l : R), derivable_pt_lim f x l -> derivable_pt_lim (mult_real_fct a f) x (a * l)
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l

derivable_pt_lim (mult_real_fct a f) x (a * l)
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0

derivable_pt_lim (mult_real_fct a f) x (a * l)
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0

derivable_pt_lim (fct_cte a * f) x (a * l)
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0
(fct_cte a * f)%F = mult_real_fct a f
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0

derivable_pt_lim (fct_cte a * f) x (0 * f x + a * l)
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0
(fct_cte a * f)%F = mult_real_fct a f
f:R -> R
a, x, l:R
H:derivable_pt_lim f x l
H0:derivable_pt_lim (fct_cte a) x 0

(fct_cte a * f)%F = mult_real_fct a f
unfold mult_real_fct, mult_fct, fct_cte; reflexivity. Qed.

forall (f : R -> R) (x l a : R), derivable_pt_lim f x l -> derivable_pt_lim (fun y : R => f y / a) x (l / a)
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l

forall z : R, / a * f z = f z / a
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l
derivable_pt_lim (fun y : R => / a * f y) x (l / a)
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l

derivable_pt_lim (fun y : R => / a * f y) x (l / a)
unfold Rdiv; rewrite Rmult_comm; apply derivable_pt_lim_scal; assumption. Qed.

forall (f : R -> R) (x l a : R), derivable_pt_lim f x l -> derivable_pt_lim (fun y : R => f y * a) x (l * a)
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l

forall z : R, a * f z = f z * a
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l
derivable_pt_lim (fun y : R => a * f y) x (l * a)
f:R -> R
x, l, a:R
df:derivable_pt_lim f x l

derivable_pt_lim (fun y : R => a * f y) x (l * a)
unfold Rdiv; rewrite Rmult_comm; apply derivable_pt_lim_scal; assumption. Qed.

forall x : R, derivable_pt_lim id x 1

forall x : R, derivable_pt_lim id x 1
x:R

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((id (x + h) - id x) / h - 1) < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

Rabs 0 < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
0 = (x + h - x) / h - 1
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

0 <= Rabs h
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
Rabs h < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
0 = (x + h - x) / h - 1
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

Rabs h < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
0 = (x + h - x) / h - 1
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

0 = (x + h - x) / h - 1
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

0 = (h + (- x + x)) / h + - (1)
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

0 = 1 + - (1)
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
h <> 0
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h <> 0
assumption. Qed.

forall x : R, derivable_pt_lim Rsqr x (2 * x)

forall x : R, derivable_pt_lim Rsqr x (2 * x)
x:R

forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs (((x + h)² - x²) / h - 2 * x) < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

Rabs h < eps
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}
h = ((x + h) * (x + h) - x * x) / h - 2 * x
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h = ((x + h) * (x + h) - x * x) / h - 2 * x
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h = (2 * x * h + h * h) / h - 2 * x
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h = 2 * x * h * / h + h * h * / h - 2 * x
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h = 2 * (x * (h * / h)) + h * (h * / h) - 2 * x
x, eps:R
Heps:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := eps; cond_pos := Heps |}

h = 2 * (x * 1) + h * 1 - 2 * x
ring. Qed.

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 (f1 x) l2 -> derivable_pt_lim (f2 o f1) x (l2 * l1)

forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 (f1 x) l2 -> derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))
H6:D_in f2 (fun _ : R => l2) no_cond (f1 x) -> derivable_pt_lim f2 (f1 x) l2
H7:derivable_pt_lim f2 (f1 x) l2 -> D_in f2 (fun _ : R => l2) no_cond (f1 x)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)
H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1
H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond x
H4:D_in f1 (fun _ : R => l1) no_cond x
H5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))
H6:D_in f2 (fun _ : R => l2) no_cond (f1 x) -> derivable_pt_lim f2 (f1 x) l2
H7:derivable_pt_lim f2 (f1 x) l2 -> D_in f2 (fun _ : R => l2) no_cond (f1 x)
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H1:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x <-> derivable_pt_lim (f2 o f1) x ((fun _ : R => l2 * l1) x)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H1:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x <-> derivable_pt_lim (f2 o f1) x ((fun _ : R => l2 * l1) x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H3:derivable_pt_lim (f2 o f1) x (l2 * l1) -> D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)

D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)

(D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x) -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x

D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)

D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x (fun _ : R => True /\ True) x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f2 (f1 x0) - f2 (f1 x)) / (x0 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0

exists alp : R, alp > 0 /\ (forall x0 : R, D_x (fun _ : R => True) x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f2 (f1 x0) - f2 (f1 x)) / (x0 - x) - l2 * l1) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)

exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)

x0 > 0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)
forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)

forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps

D_x (fun _ : R => True /\ True) x x1
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps

True /\ True
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps
x <> x1
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps

x <> x1
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps
Rabs (x1 - x) < x0
f1, f2:R -> R
x, l1, l2:R
H:derivable_pt_lim f1 x l1
H0:derivable_pt_lim f2 (f1 x) l2
H4:D_in f1 (fun _ : R => l1) no_cond x
H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)
H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)
eps:R
H3:eps > 0
x0:R
H5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)
x1:R
H6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0
H7:x0 > 0
H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps

Rabs (x1 - x) < x0
elim H6; intros; assumption. Qed.

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) x
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}

{l : R | derivable_pt_abs (f1 + f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0

{l : R | derivable_pt_abs (f1 + f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

{l : R | derivable_pt_abs (f1 + f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

derivable_pt_abs (f1 + f2) x (x0 + x1)
apply derivable_pt_lim_plus; assumption. Qed.

forall (f : R -> R) (x : R), derivable_pt f x -> derivable_pt (- f) x

forall (f : R -> R) (x : R), derivable_pt f x -> derivable_pt (- f) x
f:R -> R
x:R
X:{l : R | derivable_pt_abs f x l}

{l : R | derivable_pt_abs (- f) x l}
f:R -> R
x:R
X:{l : R | derivable_pt_abs f x l}
x0:R
p:derivable_pt_abs f x x0

{l : R | derivable_pt_abs (- f) x l}
f:R -> R
x:R
X:{l : R | derivable_pt_abs f x l}
x0:R
p:derivable_pt_abs f x x0

derivable_pt_abs (- f) x (- x0)
apply derivable_pt_lim_opp; assumption. Qed.

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) x
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}

{l : R | derivable_pt_abs (f1 - f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0

{l : R | derivable_pt_abs (f1 - f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

{l : R | derivable_pt_abs (f1 - f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

derivable_pt_abs (f1 - f2) x (x0 - x1)
apply derivable_pt_lim_minus; assumption. Qed.

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) x
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}

{l : R | derivable_pt_abs (f1 * f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0

{l : R | derivable_pt_abs (f1 * f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

{l : R | derivable_pt_abs (f1 * f2) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 x l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 x x1

derivable_pt_abs (f1 * f2) x (x0 * f2 x + f1 x * x1)
apply derivable_pt_lim_mult; assumption. Qed.

forall a x : R, derivable_pt (fct_cte a) x

forall a x : R, derivable_pt (fct_cte a) x
a, x:R

{l : R | derivable_pt_abs (fct_cte a) x l}
a, x:R

derivable_pt_abs (fct_cte a) x 0
apply derivable_pt_lim_const. Qed.

forall (f : R -> R) (a x : R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x

forall (f : R -> R) (a x : R), derivable_pt f x -> derivable_pt (mult_real_fct a f) x
f1:R -> R
a, x:R
X:{l : R | derivable_pt_abs f1 x l}

{l : R | derivable_pt_abs (mult_real_fct a f1) x l}
f1:R -> R
a, x:R
X:{l : R | derivable_pt_abs f1 x l}
x0:R
p:derivable_pt_abs f1 x x0

{l : R | derivable_pt_abs (mult_real_fct a f1) x l}
f1:R -> R
a, x:R
X:{l : R | derivable_pt_abs f1 x l}
x0:R
p:derivable_pt_abs f1 x x0

derivable_pt_abs (mult_real_fct a f1) x (a * x0)
apply derivable_pt_lim_scal; assumption. Qed.

forall x : R, derivable_pt id x

forall x : R, derivable_pt id x
x:R

{l : R | derivable_pt_abs id x l}
x:R

derivable_pt_abs id x 1
apply derivable_pt_lim_id. Qed.

forall x : R, derivable_pt Rsqr x

forall x : R, derivable_pt Rsqr x
x:R

derivable_pt_abs Rsqr x (2 * x)
apply derivable_pt_lim_Rsqr. Qed.

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x

forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) x
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 (f1 x) l}

{l : R | derivable_pt_abs (f2 o f1) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 (f1 x) l}
x0:R
p:derivable_pt_abs f1 x x0

{l : R | derivable_pt_abs (f2 o f1) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 (f1 x) l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 (f1 x) x1

{l : R | derivable_pt_abs (f2 o f1) x l}
f1, f2:R -> R
x:R
X:{l : R | derivable_pt_abs f1 x l}
X0:{l : R | derivable_pt_abs f2 (f1 x) l}
x0:R
p:derivable_pt_abs f1 x x0
x1:R
p0:derivable_pt_abs f2 (f1 x) x1

derivable_pt_abs (f2 o f1) x (x1 * x0)
apply derivable_pt_lim_comp; assumption. Qed.

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 + f2)

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 + f2)
f1, f2:R -> R
X:forall x0 : R, derivable_pt f1 x0
X0:forall x0 : R, derivable_pt f2 x0
x:R

derivable_pt (f1 + f2) x
apply (derivable_pt_plus _ _ x (X _) (X0 _)). Qed.

forall f : R -> R, derivable f -> derivable (- f)

forall f : R -> R, derivable f -> derivable (- f)
f:R -> R
X:forall x0 : R, derivable_pt f x0
x:R

derivable_pt (- f) x
apply (derivable_pt_opp _ x (X _)). Qed.

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 - f2)

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 - f2)
f1, f2:R -> R
X:forall x0 : R, derivable_pt f1 x0
X0:forall x0 : R, derivable_pt f2 x0
x:R

derivable_pt (f1 - f2) x
apply (derivable_pt_minus _ _ x (X _) (X0 _)). Qed.

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 * f2)

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 * f2)
f1, f2:R -> R
X:forall x0 : R, derivable_pt f1 x0
X0:forall x0 : R, derivable_pt f2 x0
x:R

derivable_pt (f1 * f2) x
apply (derivable_pt_mult _ _ x (X _) (X0 _)). Qed.

forall a : R, derivable (fct_cte a)

forall a : R, derivable (fct_cte a)
a, x:R

derivable_pt (fct_cte a) x
apply derivable_pt_const. Qed.

forall (f : R -> R) (a : R), derivable f -> derivable (mult_real_fct a f)

forall (f : R -> R) (a : R), derivable f -> derivable (mult_real_fct a f)
f:R -> R
a:R
X:forall x0 : R, derivable_pt f x0
x:R

derivable_pt (mult_real_fct a f) x
apply (derivable_pt_scal _ a x (X _)). Qed.

derivable id

derivable id
unfold derivable; intro; apply derivable_pt_id. Qed.

derivable Rsqr

derivable Rsqr
unfold derivable; intro; apply derivable_pt_Rsqr. Qed.

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f2 o f1)

forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f2 o f1)
f1, f2:R -> R
X:forall x0 : R, derivable_pt f1 x0
X0:forall x0 : R, derivable_pt f2 x0
x:R

derivable_pt (f2 o f1) x
apply (derivable_pt_comp _ _ x (X _) (X0 _)). Qed.

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l

derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l

derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
H3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)

derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1

derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)

derivable_pt_lim (f1 + f2) x (l1 + l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:proj1_sig pr2 = l2
l:R
H1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:derivable_pt_abs f2 x l2

derivable_pt_lim (f1 + f2) x (l1 + l2)
apply derivable_pt_lim_plus; assumption. Qed.

forall (f : R -> R) (x : R) (pr1 : derivable_pt f x), derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1

forall (f : R -> R) (x : R) (pr1 : derivable_pt f x), derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x

derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x
H:exists l : R, derive_pt f x pr1 = l

derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x
H:exists l : R, derive_pt f x pr1 = l
H0:exists l : R, derive_pt (- f) x (derivable_pt_opp f x pr1) = l

derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x
H0:exists l : R, derive_pt (- f) x (derivable_pt_opp f x pr1) = l
l1:R
H:derive_pt f x pr1 = l1

derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x
l1:R
H:derive_pt f x pr1 = l1
l2:R
H0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2

derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1
f:R -> R
x:R
pr1:derivable_pt f x
l1:R
H:derive_pt f x pr1 = l1
l2:R
H0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2

derivable_pt_lim (- f) x (- l1)
f:R -> R
x:R
pr1:derivable_pt f x
l1:R
H:derive_pt f x pr1 = l1
l2:R
H0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2
H3:(fun l : R => derivable_pt_abs f x l) (proj1_sig pr1)

derivable_pt_lim (- f) x (- l1)
f:R -> R
x:R
pr1:derivable_pt f x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2
H3:derivable_pt_abs f x l1

derivable_pt_lim (- f) x (- l1)
apply derivable_pt_lim_opp; assumption. Qed.

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l

derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l

derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
H3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)

derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1

derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)

derivable_pt_lim (f1 - f2) x (l1 - l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:proj1_sig pr2 = l2
l:R
H1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:derivable_pt_abs f2 x l2

derivable_pt_lim (f1 - f2) x (l1 - l2)
apply derivable_pt_lim_minus; assumption. Qed.

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H0:exists l : R, derive_pt f2 x pr2 = l
H1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
H1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l

derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
H3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 x pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 x
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:proj1_sig pr2 = l2
l:R
H1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:derivable_pt_abs f2 x l2

derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)
apply derivable_pt_lim_mult; assumption. Qed.

forall a x : R, derive_pt (fct_cte a) x (derivable_pt_const a x) = 0

forall a x : R, derive_pt (fct_cte a) x (derivable_pt_const a x) = 0
a, x:R

derive_pt (fct_cte a) x (derivable_pt_const a x) = 0
a, x:R

derivable_pt_lim (fct_cte a) x 0
apply derivable_pt_lim_const. Qed.

forall (f : R -> R) (a x : R) (pr : derivable_pt f x), derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr

forall (f : R -> R) (a x : R) (pr : derivable_pt f x), derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x

derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x
H:exists l : R, derive_pt f x pr = l

derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x
H:exists l : R, derive_pt f x pr = l
H0:exists l : R, derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l

derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x
H0:exists l : R, derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l
l1:R
H:derive_pt f x pr = l1

derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x
l1:R
H:derive_pt f x pr = l1
l2:R
H0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2

derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x pr
f:R -> R
a, x:R
pr:derivable_pt f x
l1:R
H:derive_pt f x pr = l1
l2:R
H0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2

derivable_pt_lim (mult_real_fct a f) x (a * l1)
f:R -> R
a, x:R
pr:derivable_pt f x
l1:R
H:derive_pt f x pr = l1
l2:R
H0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2
H3:(fun l : R => derivable_pt_abs f x l) (proj1_sig pr)

derivable_pt_lim (mult_real_fct a f) x (a * l1)
f:R -> R
a, x:R
pr:derivable_pt f x
l1:R
H:proj1_sig pr = l1
l2:R
H0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2
H3:derivable_pt_abs f x l1

derivable_pt_lim (mult_real_fct a f) x (a * l1)
apply derivable_pt_lim_scal; assumption. Qed.

forall x : R, derive_pt id x (derivable_pt_id x) = 1

forall x : R, derive_pt id x (derivable_pt_id x) = 1
x:R

derive_pt id x (derivable_pt_id x) = 1
x:R

derivable_pt_lim id x 1
apply derivable_pt_lim_id. Qed.

forall x : R, derive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * x

forall x : R, derive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * x
x:R

derive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * x
x:R

derivable_pt_lim Rsqr x (2 * x)
apply derivable_pt_lim_Rsqr. Qed.

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 (f1 x)), derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1

forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 (f1 x)), derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
H:exists l : R, derive_pt f1 x pr1 = l

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 (f1 x) pr2 = l

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
H:exists l : R, derive_pt f1 x pr1 = l
H0:exists l : R, derive_pt f2 (f1 x) pr2 = l
H1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
H0:exists l : R, derive_pt f2 (f1 x) pr2 = l
H1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
H1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l

derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:derive_pt f1 x pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
H3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:derive_pt f2 (f1 x) pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:(fun l0 : R => derivable_pt_abs f2 (f1 x) l0) (proj1_sig pr2)

derivable_pt_lim (f2 o f1) x (l2 * l1)
f1, f2:R -> R
x:R
pr1:derivable_pt f1 x
pr2:derivable_pt f2 (f1 x)
l1:R
H:proj1_sig pr1 = l1
l2:R
H0:proj1_sig pr2 = l2
l:R
H1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = l
H3:derivable_pt_abs f1 x l1
H4:derivable_pt_abs f2 (f1 x) l2

derivable_pt_lim (f2 o f1) x (l2 * l1)
apply derivable_pt_lim_comp; assumption. Qed. (* Pow *) Definition pow_fct (n:nat) (y:R) : R := y ^ n.

forall (x : R) (n : nat), (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

forall (x : R) (n : nat), (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
x:R
n:nat
H:(0 < n)%nat

derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
x:R
H:(0 < 0)%nat

derivable_pt_lim (fun y : R => y ^ 0) x (INR 0 * x ^ Init.Nat.pred 0)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

n = 0%nat \/ (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim (fun y : R => y * 1) x (1 * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim (id * fct_cte 1) x (1 * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim (id * fct_cte 1) x (1 * fct_cte 1 x + id x * 0)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
1 * fct_cte 1 x + id x * 0 = 1 * 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim id x 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
derivable_pt_lim (fct_cte 1) x 0
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
1 * fct_cte 1 x + id x * 0 = 1 * 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

derivable_pt_lim (fct_cte 1) x 0
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
1 * fct_cte 1 x + id x * 0 = 1 * 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

1 * fct_cte 1 x + id x * 0 = 1 * 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat
(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:n = 0%nat

(id * fct_cte 1)%F = (fun y : R => y * 1)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

derivable_pt_lim (fun y : R => y * y ^ n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

derivable_pt_lim (fun y : R => y * y ^ n) x (INR (S n) * x ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

derivable_pt_lim (id * (fun y : R => y ^ n)) x (INR (S n) * x ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

derivable_pt_lim (id * f) x (INR (S n) * x ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

derivable_pt_lim (id * f) x (1 * f x + id x * (INR n * x ^ Init.Nat.pred n))
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

derivable_pt_lim id x 1
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
derivable_pt_lim f x (INR n * x ^ Init.Nat.pred n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

derivable_pt_lim f x (INR n * x ^ Init.Nat.pred n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

1 * x ^ n + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

1 * x ^ S (Init.Nat.pred n) + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ S (Init.Nat.pred n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
S (Init.Nat.pred n) = n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

1 * (x * x ^ Init.Nat.pred n) + x * (INR n * x ^ Init.Nat.pred n) = (INR n + 1) * (x * x ^ Init.Nat.pred n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R
S (Init.Nat.pred n) = n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
f:=fun y : R => y ^ n:R -> R

S (Init.Nat.pred n) = n
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat
(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H0:n = 0%nat \/ (0 < n)%nat
H1:(0 < n)%nat

(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
H1:0%nat = n

0%nat = 0%nat \/ (0 < 0)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n
n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n

n = 0%nat \/ (0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n

(0 < n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n

(0 < 1)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n
(1 <= n)%nat
x:R
n:nat
H:(0 < S n)%nat
Hrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
m:nat
H1:(1 <= n)%nat
H0:m = n

(1 <= n)%nat
assumption. Qed.

forall (x : R) (n : nat), derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

forall (x : R) (n : nat), derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
x:R
n:nat

derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
x:R

derivable_pt_lim (fun y : R => y ^ 0) x (INR 0 * x ^ Init.Nat.pred 0)
x:R
n:nat
Hrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R

derivable_pt_lim (fun _ : R => 1) x (0 * 1)
x:R
n:nat
Hrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R

derivable_pt_lim (fun _ : R => 1) x 0
x:R
n:nat
Hrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
Hrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))
x:R
n:nat
Hrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)

(0 < S n)%nat
apply lt_O_Sn. Qed.

forall (n : nat) (x : R), derivable_pt (fun y : R => y ^ n) x

forall (n : nat) (x : R), derivable_pt (fun y : R => y ^ n) x
n:nat
x:R

{l : R | derivable_pt_abs (fun y : R => y ^ n) x l}
n:nat
x:R

derivable_pt_abs (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
apply derivable_pt_lim_pow. Qed.

forall n : nat, derivable (fun y : R => y ^ n)

forall n : nat, derivable (fun y : R => y ^ n)
intro; unfold derivable; intro; apply derivable_pt_pow. Qed.

forall (n : nat) (x : R), derive_pt (fun y : R => y ^ n) x (derivable_pt_pow n x) = INR n * x ^ Init.Nat.pred n

forall (n : nat) (x : R), derive_pt (fun y : R => y ^ n) x (derivable_pt_pow n x) = INR n * x ^ Init.Nat.pred n
n:nat
x:R

derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)
apply derivable_pt_lim_pow. Qed.

forall (f : R -> R) (x : R) (pr1 pr2 : derivable_pt f x), derive_pt f x pr1 = derive_pt f x pr2

forall (f : R -> R) (x : R) (pr1 pr2 : derivable_pt f x), derive_pt f x pr1 = derive_pt f x pr2
f:R -> R
x, x0:R
H0:derivable_pt_abs f x x0
x1:R
H1:derivable_pt_abs f x x1

derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 H0) = derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x1 H1)
apply (uniqueness_limite f x x0 x1 H0 H1). Qed. (************************************************************)

Local extremum's condition

(************************************************************)


forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x <= f c) -> derive_pt f c pr = 0

forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x <= f c) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 < derive_pt f c pr

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 < derive_pt f c pr
H3:exists l : R, derive_pt f c pr = l

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2

0 < (b - c) / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2

Rmin (delta / 2) ((b - c) / 2) <> 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0

Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2

0 < Rmin (delta / 2) ((b - c) / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)

a < c + Rmin (delta / 2) ((b - c) / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)

c + Rmin (delta / 2) ((b - c) / 2) < b -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0

- l < 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0

(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0

Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0

- ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0

l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2

- ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2
- (l / 2) = - l + l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2

- (l / 2) = - l + l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2

- (l / 2) = - (l / 2 + l / 2) + l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0

l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0

(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
H19:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0
H19:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2
H20:0 <= (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0

Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0

(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0

- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) < - 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0
- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) = (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
H17:- l < 0

- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) = (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0

- l < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) <= 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) = (f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) = (f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

- ((f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) * / Rmin (delta * / 2) ((b - c) * / 2)) = (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c) * / Rmin (delta * / 2) ((b - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

- (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) * / Rmin (delta * / 2) ((b - c) * / 2) = (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c) * / Rmin (delta * / 2) ((b - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

/ Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = / Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

Rmin (delta * / 2) ((b - c) * / 2) * (/ Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2)))) = Rmin (delta * / 2) ((b - c) * / 2) * (/ Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c))
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

Rmin (delta * / 2) ((b - c) * / 2) * / Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = Rmin (delta * / 2) ((b - c) * / 2) * / Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

1 * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = 1 * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

- (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:Rmin (delta * / 2) ((b - c) * / 2) = 0

False
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c

Rmin (delta * / 2) ((b - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:c + Rmin (delta / 2) ((b - c) / 2) < b
H15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c
H16:Rmin (delta * / 2) ((b - c) * / 2) = 0

False
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)

c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2

c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + Rmin (delta / 2) ((b - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
c + (b - c) / 2 < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + (b - c) / 2 < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

0 < 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
2 * (c + (b - c) / 2) < 2 * b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

2 * (c + (b - c) / 2) < 2 * b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b < 2 * b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
c + b = 2 * (c + (b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b < b + b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
b + b = 2 * b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
c + b = 2 * (c + (b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

b + b = 2 * b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
c + b = 2 * (c + (b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b = 2 * (c + (b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b = 2 * c + 2 * ((b - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b = c * 2 + (b - c) * / 2 * 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b = c * 2 + (b - c) * 1
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

c + b = c * 2 + (b - c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
H13:a < c + Rmin (delta / 2) ((b - c) / 2)
H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2
H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2

2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)

a < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)

a < c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)
c < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
H12:0 < Rmin (delta / 2) ((b - c) / 2)

c < c + Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2

0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2

0 < delta / 2 -> 0 < Rmin (delta / 2) ((b - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2
0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
H11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2

0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0

Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0

- Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0

0 < delta / 2 -> - Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0
0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0
H10:0 < delta / 2

- Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0
0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hlt:Rmin (delta / 2) ((b - c) / 2) < 0

0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

Rmin (delta / 2) ((b - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

Rmin (delta / 2) ((b - c) / 2) <= delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
delta / 2 < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

delta / 2 < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

0 < 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 * (delta * / 2) < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

2 * (delta * / 2) < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

1 * delta < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

delta < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

delta < delta + delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
delta + delta = 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

0 < delta + 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
delta + delta = 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

delta + delta = 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
H9:Rmin (delta / 2) ((b - c) / 2) <> 0
Hge:Rmin (delta / 2) ((b - c) / 2) >= 0

2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2

Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2

0 < delta / 2 -> Rmin (delta / 2) ((b - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2
0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
H8:0 < (b - c) / 2

0 < delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2

0 < (b - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2

0 < b - c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2
0 < / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
l:R
H2:0 < l
H3:exists l0 : R, derive_pt f c pr = l0
H4:derive_pt f c pr = l
H5:derivable_pt_lim f c l
H6:0 < l / 2
delta:posreal
H7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2

0 < / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
H3:0 = derive_pt f c pr

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
H3:0 > derive_pt f c pr
derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
H3:0 > derive_pt f c pr

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
H3:0 > derive_pt f c pr
H4:exists l0 : R, derive_pt f c pr = l0
l:R
H5:derive_pt f c pr = l

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

0 < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)

0 < (c - a) / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

Rmax (- (delta / 2)) ((a - c) / 2) < 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0

Rmax (- (delta / 2)) ((a - c) / 2) <> 0 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0

Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)

a < c + Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)

c + Rmax (- (delta / 2)) ((a - c) / 2) < b -> a < c + Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)

0 < - l -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l

0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l

Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hlt:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < 0

- ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0

(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)

(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)

l / 2 < 0 -> (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) < l / 2 -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)
l / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)

l / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)

l / 2 = - (l / 2) + l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Hge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0
H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)

l / 2 = - (l / 2) + (l / 2 + l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
H19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l

Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l
0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
H18:0 < - l

0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
H17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)

0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= - f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c -> 0 <= - f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c = - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

- f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c = - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * - / Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
Rmax (- (delta * / 2)) ((a - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

(f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c
Rmax (- (delta * / 2)) ((a - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < b
H15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)
H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c

Rmax (- (delta * / 2)) ((a - c) * / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)

c + Rmax (- (delta / 2)) ((a - c) / 2) < b
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)

a < c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

a < c + (a - c) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

0 < 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
2 * a < 2 * (c + (a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

2 * a < 2 * (c + (a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

2 * a < a + c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
a + c = 2 * (c + (a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

a + a < a + c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
a + c = 2 * (c + (a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

a + c = 2 * (c + (a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
H13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)
H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)
H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)

c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0

Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0

- Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2
delta / 2 < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

delta / 2 < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

0 < 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2
2 * (delta / 2) < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

2 * (delta / 2) < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

1 * delta < 2 * delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

delta < delta + delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2
2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)
H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)
H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2

2 <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

- (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(a - c) / 2 < 0 -> - (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < delta
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
(c - a) / 2 = - ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(c - a) / 2 = - ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(c - a) * / 2 = - ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(c - a) * / 2 = - (a - c) * / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

(c - a) * / 2 = (c - a) * / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0
Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0

- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0
Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0

Rmax (- (delta / 2)) ((a - c) / 2) <> 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(a - c) / 2 < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:(a - c) / 2 < 0

- (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:(a - c) / 2 < 0
- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
H10:(a - c) / 2 < 0

- (delta / 2) < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(a - c) / 2 < 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2
(c - a) / 2 = - ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(c - a) / 2 = - ((a - c) / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(c - a) * / 2 = - ((a - c) * / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(c - a) * / 2 = - (a - c) * / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
H8:0 < (c - a) / 2

(c - a) * / 2 = (c - a) * / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)
0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
H7:0 < - (l / 2)
delta:posreal
H9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)

0 < (c - a) / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

0 < - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

0 < - l / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
- l / 2 = - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

0 < - l
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
0 < / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
- l / 2 = - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

0 < / 2
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l
- l / 2 = - (l / 2)
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x <= f c
H2:0 = derive_pt f c pr \/ 0 > derive_pt f c pr
l:R
H3:0 > l
H4:exists l0 : R, derive_pt f c pr = l0
H5:derive_pt f c pr = l
H6:derivable_pt_lim f c l

- l / 2 = - (l / 2)
unfold Rdiv; apply Ropp_mult_distr_l_reverse. Qed.

forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f c <= f x) -> derive_pt f c pr = 0

forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f c <= f x) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

- - derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

- derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

derive_pt (- f) c (derivable_pt_opp f c pr) = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

(forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c) -> derive_pt (- f) c (derivable_pt_opp f c pr) = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x
forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x
H2:forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c

derive_pt (- f) c (derivable_pt_opp f c pr) = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x
forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f c <= f x

forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x0 : R, a < x0 -> x0 < b -> f c <= f x0
x:R
H2:a < x
H3:x < b

f c <= f x
apply (H1 x H2 H3). Qed.

forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x = f c) -> derive_pt f c pr = 0

forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x = f c) -> derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x = f c

derive_pt f c pr = 0
f:R -> R
a, b, c:R
pr:derivable_pt f c
H:a < c
H0:c < b
H1:forall x : R, a < x -> x < b -> f x = f c

forall x : R, a < x -> x < b -> f x <= f c
intros; right; apply (H1 x H2 H3). Qed. (**********)

forall (f : R -> R) (pr : derivable f), increasing f -> forall x : R, 0 <= derive_pt f x (pr x)

forall (f : R -> R) (pr : derivable f), increasing f -> forall x : R, 0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R

0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l : R, derive_pt f x (pr x) = l

0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l

0 <= derive_pt f x (pr x)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 < l

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 = l

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

0 < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

0 <= (f (x + delta / 2) - f x) / (delta / 2) -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= (f (x + delta / 2) - f x) / (delta / 2) - l -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0

- ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0

(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2) -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)

(f (x + delta / 2) + - f x) / (delta / 2) + - l + l < l / 2 -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2
H15:0 < l / 2

l / 2 < 0 -> 0 <= l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2
H15:0 < l / 2
l / 2 < 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2
H15:0 < l / 2

l / 2 < 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)
l / 2 = - (l / 2) + l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)

l / 2 = - (l / 2) + l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
Hge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0
H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)

l / 2 = - (l / 2) + (l / 2 + l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= (f (x + delta / 2) - f x) / (delta / 2) - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= (f (x + delta / 2) + - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= f (x + delta * / 2) + - f x
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

x <= x + delta * / 2 -> 0 <= f (x + delta * / 2) + - f x
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
x <= x + delta * / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

x <= x + delta * / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)
0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
H9:0 <= (f (x + delta / 2) - f x) / (delta / 2)

0 <= - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

0 <= (f (x + delta / 2) - f x) / (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

0 <= f (x + delta * / 2) - f x
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

x <= x + delta * / 2 -> 0 <= f (x + delta * / 2) - f x
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
x <= x + delta * / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

x <= x + delta * / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta
0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
H8:delta / 2 <> 0
H10:0 < delta / 2
H11:Rabs (delta / 2) < delta

0 <= / (delta * / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 <> 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta <> 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
/ 2 <> 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

/ 2 <> 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

0 < delta / 2 /\ Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

0 < delta / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

Rabs (delta / 2) < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 < delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

0 < 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
2 * (delta * / 2) < 2 * delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

2 * (delta * / 2) < 2 * delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta * / 2 * 2 < 2 * delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta * 1 < 2 * delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta < 2 * delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta < delta + delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta + 0 < delta + delta
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)
delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 = Rabs (delta / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
H5:0 < - (l / 2)
delta:posreal
H6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)

delta / 2 >= 0
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

0 < - (l / 2)
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

0 < - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

l + 0 < l + - l
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l
0 < / 2
f:R -> R
pr:derivable f
H:forall x0 y : R, x0 <= y -> f x0 <= f y
x:R
H0:exists l0 : R, derive_pt f x (pr x) = l0
l:R
H1:derive_pt f x (pr x) = l
H2:0 = l \/ 0 > l
H3:0 > l
H4:derivable_pt_lim f x l

0 < / 2
apply Rinv_0_lt_compat; prove_sup0. Qed.