Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Export Rlimit. Require Export Rderiv. Local Open Scope R_scope. Implicit Type f : R -> R. (****************************************************)
(****************************************************) Definition plus_fct f1 f2 (x:R) : R := f1 x + f2 x. Definition opp_fct f (x:R) : R := - f x. Definition mult_fct f1 f2 (x:R) : R := f1 x * f2 x. Definition mult_real_fct (a:R) f (x:R) : R := a * f x. Definition minus_fct f1 f2 (x:R) : R := f1 x - f2 x. Definition div_fct f1 f2 (x:R) : R := f1 x / f2 x. Definition div_real_fct (a:R) f (x:R) : R := a / f x. Definition comp f1 f2 (x:R) : R := f1 (f2 x). Definition inv_fct f (x:R) : R := / f x. Declare Scope Rfun_scope. Delimit Scope Rfun_scope with F. Arguments plus_fct (f1 f2)%F x%R. Arguments mult_fct (f1 f2)%F x%R. Arguments minus_fct (f1 f2)%F x%R. Arguments div_fct (f1 f2)%F x%R. Arguments inv_fct f%F x%R. Arguments opp_fct f%F x%R. Arguments mult_real_fct a%R f%F x%R. Arguments div_real_fct a%R f%F x%R. Arguments comp (f1 f2)%F x%R. Infix "+" := plus_fct : Rfun_scope. Notation "- x" := (opp_fct x) : Rfun_scope. Infix "*" := mult_fct : Rfun_scope. Infix "-" := minus_fct : Rfun_scope. Infix "/" := div_fct : Rfun_scope. Local Notation "f1 'o' f2" := (comp f1 f2) (at level 20, right associativity) : Rfun_scope. Notation "/ x" := (inv_fct x) : Rfun_scope. Definition fct_cte (a x:R) : R := a. Definition id (x:R) := x. (****************************************************)
(****************************************************) Definition increasing f : Prop := forall x y:R, x <= y -> f x <= f y. Definition decreasing f : Prop := forall x y:R, x <= y -> f y <= f x. Definition strict_increasing f : Prop := forall x y:R, x < y -> f x < f y. Definition strict_decreasing f : Prop := forall x y:R, x < y -> f y < f x. Definition constant f : Prop := forall x y:R, f x = f y. (**********) Definition no_cond (x:R) : Prop := True. (**********) Definition constant_D_eq f (D:R -> Prop) (c:R) : Prop := forall x:R, D x -> f x = c. (***************************************************)
(***************************************************) (**********) Definition continuity_pt f (x0:R) : Prop := continue_in f no_cond x0. Definition continuity f : Prop := forall x:R, continuity_pt f x. Arguments continuity_pt f%F x0%R. Arguments continuity f%F.forall (f g : R -> R) (a x : R), 0 < a -> (forall y : R, R_dist y x < a -> f y = g y) -> continuity_pt f x -> continuity_pt g xf, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0exists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps)f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsexists alp : R, alp > 0 /\ (forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < alp -> dist R_met (g x0) (g x) < eps)f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsRmin a a' > 0f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < epsf, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsr:a <= a'a > 0f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsn:~ a <= a'a' > 0f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < epsf, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsn:~ a <= a'a' > 0f, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < epsf, g:R -> Ra, x:Ra0:0 < aq:forall y : R, R_dist y x < a -> f y = g ycf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsforall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < Rmin a a' -> dist R_met (g x0) (g x) < epsf, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'dist R_met (f y) (f x) < epsf, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist x x < af, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist y x < af, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'D_x no_cond x y /\ dist R_met y x < a'f, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist x x < af, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist y x < af, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist x x < af, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist y x < aapply Rlt_le_trans with (Rmin a a');[ | apply Rmin_l]; tauto. Qed. (**********)f, g:R -> Ra, x:Ra0:0 < aq:forall y0 : R, R_dist y0 x < a -> f y0 = g y0cf:continuity_pt f xeps:Rep:eps > 0a':Ra'p:a' > 0Pa':forall x0 : Base R_met, D_x no_cond x x0 /\ dist R_met x0 x < a' -> dist R_met (f x0) (f x) < epsy:Base R_metcy:D_x no_cond x y /\ dist R_met y x < Rmin a a'R_dist y x < aforall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0unfold continuity_pt, plus_fct; unfold continue_in; intros; apply limit_plus; assumption. Qed.forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 + f2) x0forall (f : R -> R) (x0 : R), continuity_pt f x0 -> continuity_pt (- f) x0unfold continuity_pt, opp_fct; unfold continue_in; intros; apply limit_Ropp; assumption. Qed.forall (f : R -> R) (x0 : R), continuity_pt f x0 -> continuity_pt (- f) x0forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0unfold continuity_pt, minus_fct; unfold continue_in; intros; apply limit_minus; assumption. Qed.forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 - f2) x0forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0unfold continuity_pt, mult_fct; unfold continue_in; intros; apply limit_mul; assumption. Qed.forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> continuity_pt (f1 * f2) x0forall (f : R -> R) (x0 : R), constant f -> continuity_pt f x0unfold constant, continuity_pt; unfold continue_in; unfold limit1_in; unfold limit_in; intros; exists 1; split; [ apply Rlt_0_1 | intros; generalize (H x x0); intro; rewrite H2; simpl; rewrite R_dist_eq; assumption ]. Qed.forall (f : R -> R) (x0 : R), constant f -> continuity_pt f x0forall (f : R -> R) (a x0 : R), continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0forall (f : R -> R) (a x0 : R), continuity_pt f x0 -> continuity_pt (mult_real_fct a f) x0f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0limit1_in (fun _ : R => a) (D_x no_cond x0) a x0f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0limit1_in f (D_x no_cond x0) (f x0) x0f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0eps:RH0:eps > 01 > 0f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0eps:RH0:eps > 0forall x : Base R_met, D_x no_cond x0 x /\ dist R_met x x0 < 1 -> dist R_met a a < epsf:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0limit1_in f (D_x no_cond x0) (f x0) x0f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0eps:RH0:eps > 0forall x : Base R_met, D_x no_cond x0 x /\ dist R_met x x0 < 1 -> dist R_met a a < epsf:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0limit1_in f (D_x no_cond x0) (f x0) x0assumption. Qed.f:R -> Ra, x0:RH:limit1_in f (D_x no_cond x0) (f x0) x0limit1_in f (D_x no_cond x0) (f x0) x0forall (f : R -> R) (x0 : R), continuity_pt f x0 -> f x0 <> 0 -> continuity_pt (/ f) x0forall (f : R -> R) (x0 : R), continuity_pt f x0 -> f x0 <> 0 -> continuity_pt (/ f) x0f:R -> Rx0:RH:continuity_pt f x0H0:f x0 <> 0continuity_pt (/ f) x0f:R -> Rx0:RH:continuity_pt f x0H0:f x0 <> 0continuity_pt (fun x : R => / f x) x0f:R -> Rx0:RH:continuity_pt f x0H0:f x0 <> 0(fun x : R => / f x) = (/ f)%Funfold inv_fct; reflexivity. Qed.f:R -> Rx0:RH:continuity_pt f x0H0:f x0 <> 0(fun x : R => / f x) = (/ f)%Fforall f1 f2 : R -> R, (f1 / f2)%F = (f1 * / f2)%Fintros; reflexivity. Qed.forall f1 f2 : R -> R, (f1 / f2)%F = (f1 * / f2)%Fforall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> f2 x0 <> 0 -> continuity_pt (f1 / f2) x0intros; rewrite (div_eq_inv f1 f2); apply continuity_pt_mult; [ assumption | apply continuity_pt_inv; assumption ]. Qed.forall (f1 f2 : R -> R) (x0 : R), continuity_pt f1 x0 -> continuity_pt f2 x0 -> f2 x0 <> 0 -> continuity_pt (f1 / f2) x0forall (f1 f2 : R -> R) (x : R), continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) xforall (f1 f2 : R -> R) (x : R), continuity_pt f1 x -> continuity_pt f2 (f1 x) -> continuity_pt (f2 o f1) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)(limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) x) -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xlimit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xlimit1_in f1 (D_x no_cond x) ?l xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xlimit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) ?lf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xlimit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)limit1_in (fun x0 : R => f2 (f1 x0)) (Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1) (f2 (f1 x)) x -> limit1_in (fun x0 : R => f2 (f1 x0)) (D_x no_cond x) (f2 (f1 x)) xf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps0)eps:RH2:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x0 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs (f2 (f1 x0) - f2 (f1 x)) < eps)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0 > 0 /\ (forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0 > 0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < epsf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < alp -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x1 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < eps)forall x1 : R, D_x no_cond x x1 /\ Rabs (x1 - x) < x0 -> Rabs (f2 (f1 x1) - f2 (f1 x)) < epsf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x = f1 x1Rabs (f2 (f1 x1) - f2 (f1 x)) < epsf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1Rabs (f2 (f1 x1) - f2 (f1 x)) < epsf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1Rabs (f2 (f1 x1) - f2 (f1 x)) < epsf1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsDgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1 /\ Rabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsDgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps(True /\ x <> x1) /\ True /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ x <> x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTruef1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsx <> x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsx <> x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsH9:True /\ x <> x1H10:Rabs (x1 - x) < x0x <> x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTrue /\ f1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsTruef1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsf1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsf1 x <> f1 x1f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0elim H5; intros; assumption. Qed. (**********)f1, f2:R -> Rx:RH:limit1_in f1 (D_x no_cond x) (f1 x) xH0:limit1_in f2 (D_x no_cond (f1 x)) (f2 (f1 x)) (f1 x)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps0)eps:RH2:eps > 0H3:exists alp : R, alp > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < alp -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x0:RH4:x0 > 0 /\ (forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < eps)x1:RH5:D_x no_cond x x1 /\ Rabs (x1 - x) < x0H6:f1 x <> f1 x1H7:x0 > 0H8:forall x2 : R, Dgf (D_x no_cond x) (D_x no_cond (f1 x)) f1 x2 /\ Rabs (x2 - x) < x0 -> Rabs (f2 (f1 x2) - f2 (f1 x)) < epsRabs (x1 - x) < x0forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 + f2)unfold continuity; intros; apply (continuity_pt_plus f1 f2 x (H x) (H0 x)). Qed.forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 + f2)forall f : R -> R, continuity f -> continuity (- f)unfold continuity; intros; apply (continuity_pt_opp f x (H x)). Qed.forall f : R -> R, continuity f -> continuity (- f)forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 - f2)unfold continuity; intros; apply (continuity_pt_minus f1 f2 x (H x) (H0 x)). Qed.forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 - f2)forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 * f2)unfold continuity; intros; apply (continuity_pt_mult f1 f2 x (H x) (H0 x)). Qed.forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f1 * f2)forall f : R -> R, constant f -> continuity funfold continuity; intros; apply (continuity_pt_const f x H). Qed.forall f : R -> R, constant f -> continuity fforall (f : R -> R) (a : R), continuity f -> continuity (mult_real_fct a f)unfold continuity; intros; apply (continuity_pt_scal f a x (H x)). Qed.forall (f : R -> R) (a : R), continuity f -> continuity (mult_real_fct a f)forall f : R -> R, continuity f -> (forall x : R, f x <> 0) -> continuity (/ f)unfold continuity; intros; apply (continuity_pt_inv f x (H x) (H0 x)). Qed.forall f : R -> R, continuity f -> (forall x : R, f x <> 0) -> continuity (/ f)forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> (forall x : R, f2 x <> 0) -> continuity (f1 / f2)unfold continuity; intros; apply (continuity_pt_div f1 f2 x (H x) (H0 x) (H1 x)). Qed.forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> (forall x : R, f2 x <> 0) -> continuity (f1 / f2)forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f2 o f1)forall f1 f2 : R -> R, continuity f1 -> continuity f2 -> continuity (f2 o f1)apply (continuity_pt_comp f1 f2 x (H x) (H0 (f1 x))). Qed. (*****************************************************)f1, f2:R -> RH:forall x0 : R, continuity_pt f1 x0H0:forall x0 : R, continuity_pt f2 x0x:Rcontinuity_pt (f2 o f1) x
(*****************************************************) Definition derivable_pt_lim f (x l:R) : Prop := forall eps:R, 0 < eps -> exists delta : posreal, (forall h:R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps). Definition derivable_pt_abs f (x l:R) : Prop := derivable_pt_lim f x l. Definition derivable_pt f (x:R) := { l:R | derivable_pt_abs f x l }. Definition derivable f := forall x:R, derivable_pt f x. Definition derive_pt f (x:R) (pr:derivable_pt f x) := proj1_sig pr. Definition derive f (pr:derivable f) (x:R) := derive_pt f x (pr x). Arguments derivable_pt_lim f%F x%R l. Arguments derivable_pt_abs f%F (x l)%R. Arguments derivable_pt f%F x%R. Arguments derivable f%F. Arguments derive_pt f%F x%R pr. Arguments derive f%F pr x. Definition antiderivative f (g:R -> R) (a b:R) : Prop := (forall x:R, a <= x <= b -> exists pr : derivable_pt g x, f x = derive_pt g x pr) /\ a <= b. (**************************************)
(**************************************) Record Differential : Type := mkDifferential {d1 :> R -> R; cond_diff : derivable d1}. Record Differential_D2 : Type := mkDifferential_D2 {d2 :> R -> R; cond_D1 : derivable d2; cond_D2 : derivable (derive d2 cond_D1)}. (**********)forall (f : R -> R) (x l1 l2 : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0 -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0 -> l1 = l2forall (f : R -> R) (x l1 l2 : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0 -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0 -> l1 = l2f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0adhDa (fun h : R => h <> 0) 0f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp / 2 <> 0 /\ R_dist (alp / 2) 0 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp / 2 <> 0f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0R_dist (alp / 2) 0 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp <> 0f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 <> 0f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0R_dist (alp / 2) 0 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 <> 0f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0R_dist (alp / 2) 0 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0R_dist (alp / 2) 0 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0Rabs alp * Rabs (/ 2) < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0Rabs alp * / 2 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp * / 2 < alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp = Rabs alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 00 < 2f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 02 * (alp * / 2) < 2 * alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp = Rabs alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 02 * (alp * / 2) < 2 * alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp = Rabs alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0alp = Rabs alpf:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)symmetry ; apply Rabs_right; left; change (0 < / 2); apply Rinv_0_lt_compat; prove_sup0. Qed.f:R -> Rx, l1, l2:RH:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0alp:RH1:alp > 0/ 2 = Rabs (/ 2)forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0exists alp : R, alp > 0 /\ (forall x0 : Base R_met, x0 <> 0 /\ dist R_met x0 0 < alp -> dist R_met ((f (x + x0) - f x) / x0) l < eps)f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsexists alp : R, alp > 0 /\ (forall x0 : Base R_met, x0 <> 0 /\ dist R_met x0 0 < alp -> dist R_met ((f (x + x0) - f x) / x0) l < eps)f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsexists alp : R, alp > 0 /\ (forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < alp -> dist R_met ((f (x + x1) - f x) / x1) l < eps)f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsx0 > 0 /\ (forall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < eps)f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsx0 > 0f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsforall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < epsf:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsforall x1 : Base R_met, x1 <> 0 /\ dist R_met x1 0 < x0 -> dist R_met ((f (x + x1) - f x) / x1) l < epsf:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsx1:RH3:x1 <> 0 /\ Rabs (x1 - 0) < x0Rabs ((f (x + x1) - f x) / x1 - l) < epsapply H2; [ assumption | unfold Rminus in H5; rewrite Ropp_0 in H5; rewrite Rplus_0_r in H5; assumption ]. Qed.f:R -> Rx, l:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < eps0eps:RH0:eps > 0H1:exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsx0:posrealH2:forall h : R, h <> 0 -> Rabs h < x0 -> Rabs ((f (x + h) - f x) / h - l) < epsx1:RH3:x1 <> 0 /\ Rabs (x1 - 0) < x0H4:x1 <> 0H5:Rabs (x1 - 0) < x0Rabs ((f (x + x1) - f x) / x1 - l) < epsforall (f : R -> R) (x l : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0 -> derivable_pt_lim f x lforall (f : R -> R) (x l : R), limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0 -> derivable_pt_lim f x lf:R -> Rx, l:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist ((f (x + x0) - f x) / x0) l < eps0)eps:RH0:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsf:R -> Rx, l:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ R_dist x0 0 < alp -> R_dist ((f (x + x0) - f x) / x0) l < eps0)eps:RH0:0 < epsforall x0 : R, x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps) -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsf:R -> Rx, l:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)eps:RH0:0 < epsx0:RH1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)H2:x0 > 0H3:forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < epsf:R -> Rx, l:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)eps:RH0:0 < epsx0:RH1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)H2:x0 > 0H3:forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < epsforall h : R, h <> 0 -> Rabs h < {| pos := x0; cond_pos := H2 |} -> Rabs ((f (x + h) - f x) / h - l) < epssplit; [ assumption | unfold Rminus; rewrite Ropp_0; rewrite Rplus_0_r; assumption ]. Qed.f:R -> Rx, l:RH:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < alp -> R_dist ((f (x + x1) - f x) / x1) l < eps0)eps:RH0:0 < epsx0:RH1:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ R_dist x1 0 < x0 -> R_dist ((f (x + x1) - f x) / x1) l < eps)H2:x0 > 0H3:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f (x + x1) - f x) / x1 - l) < epsh:RH4:h <> 0H5:Rabs h < x0h <> 0 /\ Rabs (h - 0) < x0forall (f : R -> R) (x l1 l2 : R), derivable_pt_lim f x l1 -> derivable_pt_lim f x l2 -> l1 = l2forall (f : R -> R) (x l1 l2 : R), derivable_pt_lim f x l1 -> derivable_pt_lim f x l2 -> l1 = l2f:R -> Rx, l1, l2:RH:derivable_pt_lim f x l1H0:derivable_pt_lim f x l2l1 = l2f:R -> Rx, l1, l2:RH:derivable_pt_lim f x l1H0:derivable_pt_lim f x l2H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0l1 = l2f:R -> Rx, l1, l2:RH:derivable_pt_lim f x l1H0:derivable_pt_lim f x l2H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0l1 = l2assumption. Qed.f:R -> Rx, l1, l2:RH:derivable_pt_lim f x l1H0:derivable_pt_lim f x l2H1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l2 0H3:l1 = l2l1 = l2forall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l <-> derivable_pt_lim f x lforall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l <-> derivable_pt_lim f x lf:R -> Rx, l:Rpr:derivable_pt f xderive_pt f x pr = l -> derivable_pt_lim f x lf:R -> Rx, l:Rpr:derivable_pt f xderivable_pt_lim f x l -> derive_pt f x pr = lf:R -> Rx, l:Rpr:derivable_pt f xderivable_pt_lim f x l -> derive_pt f x pr = lf:R -> Rx, l:Rpr:derivable_pt f xH:derivable_pt_lim f x lH1:derivable_pt_lim f x (proj1_sig pr)derive_pt f x pr = lf:R -> Rx, l:Rpr:derivable_pt f xH:derivable_pt_lim f x lH1:derivable_pt_lim f x (proj1_sig pr)H2:l = proj1_sig prderive_pt f x pr = lsymmetry ; assumption. Qed. (**********)f:R -> Rx, l:Rpr:derivable_pt f xH:derivable_pt_lim f x lH1:derivable_pt_lim f x (proj1_sig pr)H2:l = proj1_sig prproj1_sig pr = lforall (f : R -> R) (x l : R) (pr : derivable_pt f x), derivable_pt_lim f x l -> derive_pt f x pr = lforall (f : R -> R) (x l : R) (pr : derivable_pt f x), derivable_pt_lim f x l -> derive_pt f x pr = lapply (H1 H). Qed. (**********)f:R -> Rx, l:Rpr:derivable_pt f xH:derivable_pt_lim f x lH0:derive_pt f x pr = l -> derivable_pt_lim f x lH1:derivable_pt_lim f x l -> derive_pt f x pr = lderive_pt f x pr = lforall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l -> derivable_pt_lim f x lforall (f : R -> R) (x l : R) (pr : derivable_pt f x), derive_pt f x pr = l -> derivable_pt_lim f x lapply (H0 H). Qed. (**********************************************************************)f:R -> Rx, l:Rpr:derivable_pt f xH:derive_pt f x pr = lH0:derive_pt f x pr = l -> derivable_pt_lim f x lH1:derivable_pt_lim f x l -> derive_pt f x pr = lderivable_pt_lim f x l
(**********************************************************************)forall (f df : R -> R) (x : R) (pr : derivable_pt f x), D_in f df no_cond x <-> derive_pt f x pr = df xforall (f df : R -> R) (x : R) (pr : derivable_pt f x), D_in f df no_cond x <-> derive_pt f x pr = df xf, df:R -> Rx:Rpr:derivable_pt f xD_in f df no_cond x -> derive_pt f x pr = df xf, df:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = df x -> D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)derive_pt f x pr = df xf, df:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = df x -> D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)derivable_pt_lim f x (df x)f, df:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = df x -> D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < epsf, df:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = df x -> D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = df x -> D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xD_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)D_in f df no_cond xf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsalpha > 0f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0x0 - x <> 0 -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0x0 - x <> 0f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0H8:x0 - x <> 0Rabs ((f x0 - f x) / (x0 - x) - df x) < eps -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0H8:x0 - x <> 0x0 = x + (x0 - x)f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0x0 - x <> 0f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0H8:x0 - x <> 0x0 = x + (x0 - x)f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0x0 - x <> 0auto with real. Qed.f, df:R -> Rx:Rpr:derivable_pt f xH:derive_pt f x pr = df xH0:derivable_pt_lim f x (df x)eps:RH1:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH3:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH4:no_cond x0 /\ x <> x0H5:Rabs (x0 - x) < alphaH6:no_cond x0H7:x <> x0x0 - x <> 0forall (f df : R -> R) (x : R), D_in f df no_cond x <-> derivable_pt_lim f x (df x)forall (f df : R -> R) (x : R), D_in f df no_cond x <-> derivable_pt_lim f x (df x)f, df:R -> Rx:RD_in f df no_cond x -> derivable_pt_lim f x (df x)f, df:R -> Rx:Rderivable_pt_lim f x (df x) -> D_in f df no_cond xf, df:R -> Rx:RH:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)derivable_pt_lim f x (df x)f, df:R -> Rx:Rderivable_pt_lim f x (df x) -> D_in f df no_cond xf, df:R -> Rx:RH:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < epsf, df:R -> Rx:Rderivable_pt_lim f x (df x) -> D_in f df no_cond xf, df:R -> Rx:Rderivable_pt_lim f x (df x) -> D_in f df no_cond xf, df:R -> Rx:RH:derivable_pt_lim f x (df x)D_in f df no_cond xf, df:R -> Rx:RH:forall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < epsD_in f df no_cond xf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f x0 - f x) / (x0 - x) - df x) < eps)f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsalpha > 0f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsforall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < alpha -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaRabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0x0 - x <> 0 -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0x0 - x <> 0f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0H7:x0 - x <> 0Rabs ((f x0 - f x) / (x0 - x) - df x) < eps -> Rabs ((f x0 - f x) / (x0 - x) - df x) < epsf, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0H7:x0 - x <> 0x0 = x + (x0 - x)f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0x0 - x <> 0f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0H7:x0 - x <> 0x0 = x + (x0 - x)f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0x0 - x <> 0auto with real. Qed. (* Extensionally equal functions have the same derivative. *)f, df:R -> Rx:RH:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - df x) < eps0eps:RH0:eps > 0alpha:posrealH2:forall h : R, h <> 0 -> Rabs h < alpha -> Rabs ((f (x + h) - f x) / h - df x) < epsx0:RH1:D_x no_cond x x0 /\ Rabs (x0 - x) < alphaH3:no_cond x0 /\ x <> x0H4:Rabs (x0 - x) < alphaH5:no_cond x0H6:x <> x0x0 - x <> 0intros f g x l fg df e ep; destruct (df e ep) as [d pd]; exists d; intros h; rewrite <- !fg; apply pd. Qed. (* extensionally equal functions have the same derivative, locally. *)forall (f g : R -> R) (x l : R), (forall z : R, f z = g z) -> derivable_pt_lim f x l -> derivable_pt_lim g x lforall (f g : R -> R) (x a b l : R), a < x < b -> (forall z : R, a < z < b -> f z = g z) -> derivable_pt_lim f x l -> derivable_pt_lim g x lf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < eexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < eexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < e0 < Rmin d (Rmin (b - x) (x - a))f, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h : R, h <> 0 -> Rabs h < d -> Rabs ((f (x + h) - f x) / h - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((g (x + h) - g x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))Rabs ((g (x + h) - g x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))Rabs ((f (x + h) - f x) / h - l) < ef, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))a < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))Rabs h < df, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))a < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))a < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))- h < x - af, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))Rabs (- h) < x - af, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))Rmin d (Rmin (b - x) (x - a)) <= x - af, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - ah < b - xf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aRabs h < b - xf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aRmin d (Rmin (b - x) (x - a)) <= b - xf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xa < x + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xa < x + hf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - x- h + a < - h + (x + h)f, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - x- h + a < xf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - x- h + a + - a < x + - af, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - x- h < x + - af, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h < bf, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xx + h + - x < b + - xassumption. Qed. (***********************************)f, g:R -> Rx, a, b, l:Raxb:a < x < bfg:forall z : R, a < z < b -> f z = g zdf:derivable_pt_lim f x le:Rep:0 < ed:posrealpd:forall h0 : R, h0 <> 0 -> Rabs h0 < d -> Rabs ((f (x + h0) - f x) / h0 - l) < ed'h:0 < Rmin d (Rmin (b - x) (x - a))h:Rhn0:h <> 0cmp:Rabs h < Rmin d (Rmin (b - x) (x - a))H:- h < x - aH0:h < b - xh < b + - x
(***********************************) (**********)forall (f : R -> R) (x : R) (pr : derivable_pt f x), exists l : R, derive_pt f x pr = lforall (f : R -> R) (x : R) (pr : derivable_pt f x), exists l : R, derive_pt f x pr = lunfold derive_pt; reflexivity. Qed.f:R -> Rx:Rpr:derivable_pt f xderive_pt f x pr = proj1_sig prforall (f : R -> R) (x : R), derivable_pt f x -> continuity_pt f xforall (f : R -> R) (x : R), derivable_pt f x -> continuity_pt f xf:R -> Rx:RX:derivable_pt f xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l : R, derive_pt f x X = lcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = lcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l x -> continuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = lH0:l = fct_cte l xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = fct_cte l xH0:l = fct_cte l xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = fct_cte l xH0:l = fct_cte l xH2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = fct_cte l xH0:l = fct_cte l xH2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l xH3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l xH4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = fct_cte l xH0:l = fct_cte l xH2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l xH3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l xH4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond xH5:D_in f (fct_cte l) no_cond xcontinuity_pt f xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = fct_cte l xH0:l = fct_cte l xH2:forall pr : derivable_pt f x, D_in f (fct_cte l) no_cond x <-> derive_pt f x pr = fct_cte l xH3:D_in f (fct_cte l) no_cond x -> derive_pt f x X = fct_cte l xH4:derive_pt f x X = fct_cte l x -> D_in f (fct_cte l) no_cond xH5:D_in f (fct_cte l) no_cond xcontinue_in f no_cond xf:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xunfold fct_cte; reflexivity. Qed.f:R -> Rx:RX:derivable_pt f xH:exists l0 : R, derive_pt f x X = l0l:RH1:derive_pt f x X = ll = fct_cte l xforall f : R -> R, derivable f -> continuity fforall f : R -> R, derivable f -> continuity fapply (derivable_continuous_pt f x (X x)). Qed. (****************************************************************)f:R -> RX:forall x0 : R, derivable_pt f x0x:Rcontinuity_pt f x
(****************************************************************)forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 + f2) x (l1 + l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2derivable_pt_lim (f1 + f2) x (l1 + l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0limit1_in (fun h : R => ((f1 + f2)%F (x + h) - (f1 + f2)%F x) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0(forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / h) -> limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hlimit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hlimit1_in (fun x0 : R => (f1 (x + x0) - f1 x) / x0 + (f2 (x + x0) - f2 x) / x0) (fun h : R => h <> 0) (l1 + l2) 0 -> limit1_in (fun h : R => (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h) (fun h : R => h <> 0) (l1 + l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f1 x) / x0 + (f2 (x + x0) - f2 x) / x0 - (l1 + l2)) < eps0)eps:RH5:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) + f2 (x + x0) - (f1 x + f2 x)) / x0 - (l1 + l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < epsx0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < epsx0 > 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 + (f2 (x + x1) - f2 x) / x1 - (l1 + l2)) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) + f2 (x + x1) - (f1 x + f2 x)) / x1 - (l1 + l2)) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hintro; unfold Rdiv; ring. Qed.f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) + f2 (x + h) - (f1 x + f2 x)) / h = (f1 (x + h) - f1 x) / h + (f2 (x + h) - f2 x) / hforall (f : R -> R) (x l : R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l)forall (f : R -> R) (x l : R), derivable_pt_lim f x l -> derivable_pt_lim (- f) x (- l)f:R -> Rx, l:RH:derivable_pt_lim f x lderivable_pt_lim (- f) x (- l)f:R -> Rx, l:RH:derivable_pt_lim f x llimit1_in (fun h : R => ((- f)%F (x + h) - (- f)%F x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0limit1_in (fun h : R => ((- f)%F (x + h) - (- f)%F x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0(forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)) -> limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)limit1_in (fun x0 : R => - ((f (x + x0) - f x) / x0)) (fun h : R => h <> 0) (- l) 0 -> limit1_in (fun h : R => (- f (x + h) - - f x) / h) (fun h : R => h <> 0) (- l) 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs (- ((f (x + x0) - f x) / x0) - - l) < eps0)eps:RH3:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((- f (x + x0) - - f x) / x0 - - l) < eps)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)H5:x0 > 0H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < epsx0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < eps)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)H5:x0 > 0H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < epsx0 > 0f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)H5:x0 > 0H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < epsf:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0H0:forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)H2:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps0)eps:RH3:eps > 0x0:RH4:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < eps)H5:x0 > 0H6:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs (- ((f (x + x1) - f x) / x1) - - l) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((- f (x + x1) - - f x) / x1 - - l) < epsf:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)intro; unfold Rdiv; ring. Qed.f:R -> Rx, l:RH:derivable_pt_lim f x lH1:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) l 0forall h : R, (- f (x + h) - - f x) / h = - ((f (x + h) - f x) / h)forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 - f2) x (l1 - l2)forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 - f2) x (l1 - l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2derivable_pt_lim (f1 - f2) x (l1 - l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0limit1_in (fun h : R => ((f1 - f2)%F (x + h) - (f1 - f2)%F x) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0(forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) -> limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hlimit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hlimit1_in (fun x0 : R => (f1 (x + x0) - f1 x) / x0 - (f2 (x + x0) - f2 x) / x0) (fun h : R => h <> 0) (l1 - l2) 0 -> limit1_in (fun h : R => (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / h) (fun h : R => h <> 0) (l1 - l2) 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f1 x) / x0 - (f2 (x + x0) - f2 x) / x0 - (l1 - l2)) < eps0)eps:RH5:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, x0 <> 0 /\ Rabs (x0 - 0) < alp -> Rabs ((f1 (x + x0) - f2 (x + x0) - (f1 x - f2 x)) / x0 - (l1 - l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < epsx0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < epsx0 > 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0H3:forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hH4:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < alp -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps0)eps:RH5:eps > 0x0:RH6:x0 > 0 /\ (forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < eps)H7:x0 > 0H8:forall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f1 x) / x1 - (f2 (x + x1) - f2 x) / x1 - (l1 - l2)) < epsforall x1 : R, x1 <> 0 /\ Rabs (x1 - 0) < x0 -> Rabs ((f1 (x + x1) - f2 (x + x1) - (f1 x - f2 x)) / x1 - (l1 - l2)) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hintro; unfold Rdiv; ring. Qed.f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:limit1_in (fun h : R => (f1 (x + h) - f1 x) / h) (fun h : R => h <> 0) l1 0H2:limit1_in (fun h : R => (f2 (x + h) - f2 x) / h) (fun h : R => h <> 0) l2 0forall h : R, (f1 (x + h) - f1 x) / h - (f2 (x + h) - f2 x) / h = (f1 (x + h) - f2 (x + h) - (f1 x - f2 x)) / hforall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 x l2 -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)H6:D_in f2 (fun _ : R => l2) no_cond x -> derivable_pt_lim f2 x l2H7:derivable_pt_lim f2 x l2 -> D_in f2 (fun _ : R => l2) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond x <-> derivable_pt_lim f2 x ((fun _ : R => l2) x)H6:D_in f2 (fun _ : R => l2) no_cond x -> derivable_pt_lim f2 x l2H7:derivable_pt_lim f2 x l2 -> D_in f2 (fun _ : R => l2) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xH1:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x <-> derivable_pt_lim (f1 * f2) x ((fun _ : R => l1 * f2 x + f1 x * l2) x)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xH1:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x <-> derivable_pt_lim (f1 * f2) x ((fun _ : R => l1 * f2 x + f1 x * l2) x)H2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)H3:derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2) -> D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond xderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xH2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xH2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond xapply (Dmult no_cond (fun y:R => l1) (fun y:R => l2) f1 f2 x); assumption. Qed.f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 x l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond xH2:D_in (f1 * f2)%F (fun _ : R => l1 * f2 x + f1 x * l2) no_cond x -> derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)D_in (fun x0 : R => f1 x0 * f2 x0) (fun _ : R => l1 * f2 x + f1 x * l2) no_cond xforall a x : R, derivable_pt_lim (fct_cte a) x 0forall a x : R, derivable_pt_lim (fct_cte a) x 0intros; exists (mkposreal 1 Rlt_0_1); intros; unfold Rminus; rewrite Rplus_opp_r; unfold Rdiv; rewrite Rmult_0_l; rewrite Rplus_opp_r; rewrite Rabs_R0; assumption. Qed.a, x:Rforall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((a - a) / h - 0) < epsforall (f : R -> R) (a x l : R), derivable_pt_lim f x l -> derivable_pt_lim (mult_real_fct a f) x (a * l)forall (f : R -> R) (a x l : R), derivable_pt_lim f x l -> derivable_pt_lim (mult_real_fct a f) x (a * l)f:R -> Ra, x, l:RH:derivable_pt_lim f x lderivable_pt_lim (mult_real_fct a f) x (a * l)f:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0derivable_pt_lim (mult_real_fct a f) x (a * l)f:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0derivable_pt_lim (fct_cte a * f) x (a * l)f:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0(fct_cte a * f)%F = mult_real_fct a ff:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0derivable_pt_lim (fct_cte a * f) x (0 * f x + a * l)f:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0(fct_cte a * f)%F = mult_real_fct a funfold mult_real_fct, mult_fct, fct_cte; reflexivity. Qed.f:R -> Ra, x, l:RH:derivable_pt_lim f x lH0:derivable_pt_lim (fct_cte a) x 0(fct_cte a * f)%F = mult_real_fct a fforall (f : R -> R) (x l a : R), derivable_pt_lim f x l -> derivable_pt_lim (fun y : R => f y / a) x (l / a)f:R -> Rx, l, a:Rdf:derivable_pt_lim f x lforall z : R, / a * f z = f z / af:R -> Rx, l, a:Rdf:derivable_pt_lim f x lderivable_pt_lim (fun y : R => / a * f y) x (l / a)unfold Rdiv; rewrite Rmult_comm; apply derivable_pt_lim_scal; assumption. Qed.f:R -> Rx, l, a:Rdf:derivable_pt_lim f x lderivable_pt_lim (fun y : R => / a * f y) x (l / a)forall (f : R -> R) (x l a : R), derivable_pt_lim f x l -> derivable_pt_lim (fun y : R => f y * a) x (l * a)f:R -> Rx, l, a:Rdf:derivable_pt_lim f x lforall z : R, a * f z = f z * af:R -> Rx, l, a:Rdf:derivable_pt_lim f x lderivable_pt_lim (fun y : R => a * f y) x (l * a)unfold Rdiv; rewrite Rmult_comm; apply derivable_pt_lim_scal; assumption. Qed.f:R -> Rx, l, a:Rdf:derivable_pt_lim f x lderivable_pt_lim (fun y : R => a * f y) x (l * a)forall x : R, derivable_pt_lim id x 1forall x : R, derivable_pt_lim id x 1x:Rforall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((id (x + h) - id x) / h - 1) < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}Rabs 0 < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = (x + h - x) / h - 1x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 <= Rabs hx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}Rabs h < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = (x + h - x) / h - 1x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}Rabs h < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = (x + h - x) / h - 1x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = (x + h - x) / h - 1x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = (h + (- x + x)) / h + - (1)x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}0 = 1 + - (1)x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h <> 0assumption. Qed.x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h <> 0forall x : R, derivable_pt_lim Rsqr x (2 * x)forall x : R, derivable_pt_lim Rsqr x (2 * x)x:Rforall eps : R, 0 < eps -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs (((x + h)² - x²) / h - 2 * x) < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}Rabs h < epsx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = ((x + h) * (x + h) - x * x) / h - 2 * xx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = ((x + h) * (x + h) - x * x) / h - 2 * xx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = (2 * x * h + h * h) / h - 2 * xx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = 2 * x * h * / h + h * h * / h - 2 * xx, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = 2 * (x * (h * / h)) + h * (h * / h) - 2 * xring. Qed.x, eps:RHeps:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := eps; cond_pos := Heps |}h = 2 * (x * 1) + h * 1 - 2 * xforall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 (f1 x) l2 -> derivable_pt_lim (f2 o f1) x (l2 * l1)forall (f1 f2 : R -> R) (x l1 l2 : R), derivable_pt_lim f1 x l1 -> derivable_pt_lim f2 (f1 x) l2 -> derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xderivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xderivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))H6:D_in f2 (fun _ : R => l2) no_cond (f1 x) -> derivable_pt_lim f2 (f1 x) l2H7:derivable_pt_lim f2 (f1 x) l2 -> D_in f2 (fun _ : R => l2) no_cond (f1 x)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H1:D_in f1 (fun _ : R => l1) no_cond x <-> derivable_pt_lim f1 x ((fun _ : R => l1) x)H2:D_in f1 (fun _ : R => l1) no_cond x -> derivable_pt_lim f1 x l1H3:derivable_pt_lim f1 x l1 -> D_in f1 (fun _ : R => l1) no_cond xH4:D_in f1 (fun _ : R => l1) no_cond xH5:D_in f2 (fun _ : R => l2) no_cond (f1 x) <-> derivable_pt_lim f2 (f1 x) ((fun _ : R => l2) (f1 x))H6:D_in f2 (fun _ : R => l2) no_cond (f1 x) -> derivable_pt_lim f2 (f1 x) l2H7:derivable_pt_lim f2 (f1 x) l2 -> D_in f2 (fun _ : R => l2) no_cond (f1 x)H8:D_in f2 (fun _ : R => l2) no_cond (f1 x)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H1:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x <-> derivable_pt_lim (f2 o f1) x ((fun _ : R => l2 * l1) x)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H1:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x <-> derivable_pt_lim (f2 o f1) x ((fun _ : R => l2 * l1) x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H3:derivable_pt_lim (f2 o f1) x (l2 * l1) -> D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond xderivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)(D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond x) -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond xD_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) (Dgf no_cond no_cond f1) x -> D_in (fun x0 : R => f2 (f1 x0)) (fun _ : R => l2 * l1) no_cond xf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x0 : R, D_x (fun _ : R => True /\ True) x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f2 (f1 x0) - f2 (f1 x)) / (x0 - x) - l2 * l1) < eps0)eps:RH3:eps > 0exists alp : R, alp > 0 /\ (forall x0 : R, D_x (fun _ : R => True) x x0 /\ Rabs (x0 - x) < alp -> Rabs ((f2 (f1 x0) - f2 (f1 x)) / (x0 - x) - l2 * l1) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)x0 > 0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < alp -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x1 : R, D_x (fun _ : R => True /\ True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < eps)forall x1 : R, D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0 -> Rabs ((f2 (f1 x1) - f2 (f1 x)) / (x1 - x) - l2 * l1) < epsf1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsD_x (fun _ : R => True /\ True) x x1f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsRabs (x1 - x) < x0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsTrue /\ Truef1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsx <> x1f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsRabs (x1 - x) < x0f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsx <> x1f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsRabs (x1 - x) < x0elim H6; intros; assumption. Qed.f1, f2:R -> Rx, l1, l2:RH:derivable_pt_lim f1 x l1H0:derivable_pt_lim f2 (f1 x) l2H4:D_in f1 (fun _ : R => l1) no_cond xH8:D_in f2 (fun _ : R => l2) no_cond (f1 x)H2:D_in (f2 o f1)%F (fun _ : R => l2 * l1) no_cond x -> derivable_pt_lim (f2 o f1) x (l2 * l1)H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < alp -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps0)eps:RH3:eps > 0x0:RH5:x0 > 0 /\ (forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < eps)x1:RH6:D_x (fun _ : R => True) x x1 /\ Rabs (x1 - x) < x0H7:x0 > 0H9:forall x2 : R, D_x (fun _ : R => True /\ True) x x2 /\ Rabs (x2 - x) < x0 -> Rabs ((f2 (f1 x2) - f2 (f1 x)) / (x2 - x) - l2 * l1) < epsRabs (x1 - x) < x0forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) xforall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 + f2) xf1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}{l : R | derivable_pt_abs (f1 + f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0{l : R | derivable_pt_abs (f1 + f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1{l : R | derivable_pt_abs (f1 + f2) x l}apply derivable_pt_lim_plus; assumption. Qed.f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1derivable_pt_abs (f1 + f2) x (x0 + x1)forall (f : R -> R) (x : R), derivable_pt f x -> derivable_pt (- f) xforall (f : R -> R) (x : R), derivable_pt f x -> derivable_pt (- f) xf:R -> Rx:RX:{l : R | derivable_pt_abs f x l}{l : R | derivable_pt_abs (- f) x l}f:R -> Rx:RX:{l : R | derivable_pt_abs f x l}x0:Rp:derivable_pt_abs f x x0{l : R | derivable_pt_abs (- f) x l}apply derivable_pt_lim_opp; assumption. Qed.f:R -> Rx:RX:{l : R | derivable_pt_abs f x l}x0:Rp:derivable_pt_abs f x x0derivable_pt_abs (- f) x (- x0)forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) xforall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 - f2) xf1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}{l : R | derivable_pt_abs (f1 - f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0{l : R | derivable_pt_abs (f1 - f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1{l : R | derivable_pt_abs (f1 - f2) x l}apply derivable_pt_lim_minus; assumption. Qed.f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1derivable_pt_abs (f1 - f2) x (x0 - x1)forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) xforall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 x -> derivable_pt (f1 * f2) xf1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}{l : R | derivable_pt_abs (f1 * f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0{l : R | derivable_pt_abs (f1 * f2) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1{l : R | derivable_pt_abs (f1 * f2) x l}apply derivable_pt_lim_mult; assumption. Qed.f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 x l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 x x1derivable_pt_abs (f1 * f2) x (x0 * f2 x + f1 x * x1)forall a x : R, derivable_pt (fct_cte a) xforall a x : R, derivable_pt (fct_cte a) xa, x:R{l : R | derivable_pt_abs (fct_cte a) x l}apply derivable_pt_lim_const. Qed.a, x:Rderivable_pt_abs (fct_cte a) x 0forall (f : R -> R) (a x : R), derivable_pt f x -> derivable_pt (mult_real_fct a f) xforall (f : R -> R) (a x : R), derivable_pt f x -> derivable_pt (mult_real_fct a f) xf1:R -> Ra, x:RX:{l : R | derivable_pt_abs f1 x l}{l : R | derivable_pt_abs (mult_real_fct a f1) x l}f1:R -> Ra, x:RX:{l : R | derivable_pt_abs f1 x l}x0:Rp:derivable_pt_abs f1 x x0{l : R | derivable_pt_abs (mult_real_fct a f1) x l}apply derivable_pt_lim_scal; assumption. Qed.f1:R -> Ra, x:RX:{l : R | derivable_pt_abs f1 x l}x0:Rp:derivable_pt_abs f1 x x0derivable_pt_abs (mult_real_fct a f1) x (a * x0)forall x : R, derivable_pt id xforall x : R, derivable_pt id xx:R{l : R | derivable_pt_abs id x l}apply derivable_pt_lim_id. Qed.x:Rderivable_pt_abs id x 1forall x : R, derivable_pt Rsqr xforall x : R, derivable_pt Rsqr xapply derivable_pt_lim_Rsqr. Qed.x:Rderivable_pt_abs Rsqr x (2 * x)forall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) xforall (f1 f2 : R -> R) (x : R), derivable_pt f1 x -> derivable_pt f2 (f1 x) -> derivable_pt (f2 o f1) xf1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 (f1 x) l}{l : R | derivable_pt_abs (f2 o f1) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 (f1 x) l}x0:Rp:derivable_pt_abs f1 x x0{l : R | derivable_pt_abs (f2 o f1) x l}f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 (f1 x) l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 (f1 x) x1{l : R | derivable_pt_abs (f2 o f1) x l}apply derivable_pt_lim_comp; assumption. Qed.f1, f2:R -> Rx:RX:{l : R | derivable_pt_abs f1 x l}X0:{l : R | derivable_pt_abs f2 (f1 x) l}x0:Rp:derivable_pt_abs f1 x x0x1:Rp0:derivable_pt_abs f2 (f1 x) x1derivable_pt_abs (f2 o f1) x (x1 * x0)forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 + f2)forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 + f2)apply (derivable_pt_plus _ _ x (X _) (X0 _)). Qed.f1, f2:R -> RX:forall x0 : R, derivable_pt f1 x0X0:forall x0 : R, derivable_pt f2 x0x:Rderivable_pt (f1 + f2) xforall f : R -> R, derivable f -> derivable (- f)forall f : R -> R, derivable f -> derivable (- f)apply (derivable_pt_opp _ x (X _)). Qed.f:R -> RX:forall x0 : R, derivable_pt f x0x:Rderivable_pt (- f) xforall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 - f2)forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 - f2)apply (derivable_pt_minus _ _ x (X _) (X0 _)). Qed.f1, f2:R -> RX:forall x0 : R, derivable_pt f1 x0X0:forall x0 : R, derivable_pt f2 x0x:Rderivable_pt (f1 - f2) xforall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 * f2)forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f1 * f2)apply (derivable_pt_mult _ _ x (X _) (X0 _)). Qed.f1, f2:R -> RX:forall x0 : R, derivable_pt f1 x0X0:forall x0 : R, derivable_pt f2 x0x:Rderivable_pt (f1 * f2) xforall a : R, derivable (fct_cte a)forall a : R, derivable (fct_cte a)apply derivable_pt_const. Qed.a, x:Rderivable_pt (fct_cte a) xforall (f : R -> R) (a : R), derivable f -> derivable (mult_real_fct a f)forall (f : R -> R) (a : R), derivable f -> derivable (mult_real_fct a f)apply (derivable_pt_scal _ a x (X _)). Qed.f:R -> Ra:RX:forall x0 : R, derivable_pt f x0x:Rderivable_pt (mult_real_fct a f) xderivable idunfold derivable; intro; apply derivable_pt_id. Qed.derivable idderivable Rsqrunfold derivable; intro; apply derivable_pt_Rsqr. Qed.derivable Rsqrforall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f2 o f1)forall f1 f2 : R -> R, derivable f1 -> derivable f2 -> derivable (f2 o f1)apply (derivable_pt_comp _ _ x (X _) (X0 _)). Qed.f1, f2:R -> RX:forall x0 : R, derivable_pt f1 x0X0:forall x0 : R, derivable_pt f2 x0x:Rderivable_pt (f2 o f1) xforall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xderive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lderive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lderive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lderive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH1:exists l : R, derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lderive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 + derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lderivable_pt_lim (f1 + f2) x (l1 + l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lH3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)derivable_pt_lim (f1 + f2) x (l1 + l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1derivable_pt_lim (f1 + f2) x (l1 + l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)derivable_pt_lim (f1 + f2) x (l1 + l2)apply derivable_pt_lim_plus; assumption. Qed.f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:proj1_sig pr2 = l2l:RH1:derive_pt (f1 + f2) x (derivable_pt_plus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:derivable_pt_abs f2 x l2derivable_pt_lim (f1 + f2) x (l1 + l2)forall (f : R -> R) (x : R) (pr1 : derivable_pt f x), derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1forall (f : R -> R) (x : R) (pr1 : derivable_pt f x), derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xderive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xH:exists l : R, derive_pt f x pr1 = lderive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xH:exists l : R, derive_pt f x pr1 = lH0:exists l : R, derive_pt (- f) x (derivable_pt_opp f x pr1) = lderive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xH0:exists l : R, derive_pt (- f) x (derivable_pt_opp f x pr1) = ll1:RH:derive_pt f x pr1 = l1derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xl1:RH:derive_pt f x pr1 = l1l2:RH0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2derive_pt (- f) x (derivable_pt_opp f x pr1) = - derive_pt f x pr1f:R -> Rx:Rpr1:derivable_pt f xl1:RH:derive_pt f x pr1 = l1l2:RH0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2derivable_pt_lim (- f) x (- l1)f:R -> Rx:Rpr1:derivable_pt f xl1:RH:derive_pt f x pr1 = l1l2:RH0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2H3:(fun l : R => derivable_pt_abs f x l) (proj1_sig pr1)derivable_pt_lim (- f) x (- l1)apply derivable_pt_lim_opp; assumption. Qed.f:R -> Rx:Rpr1:derivable_pt f xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt (- f) x (derivable_pt_opp f x pr1) = l2H3:derivable_pt_abs f x l1derivable_pt_lim (- f) x (- l1)forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xderive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lderive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lderive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lderive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH1:exists l : R, derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lderive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = derive_pt f1 x pr1 - derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lderivable_pt_lim (f1 - f2) x (l1 - l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lH3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)derivable_pt_lim (f1 - f2) x (l1 - l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1derivable_pt_lim (f1 - f2) x (l1 - l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)derivable_pt_lim (f1 - f2) x (l1 - l2)apply derivable_pt_lim_minus; assumption. Qed.f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:proj1_sig pr2 = l2l:RH1:derive_pt (f1 - f2) x (derivable_pt_minus f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:derivable_pt_abs f2 x l2derivable_pt_lim (f1 - f2) x (l1 - l2)forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 x), derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xderive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lderive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lderive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lderive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH0:exists l : R, derive_pt f2 x pr2 = lH1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xH1:exists l : R, derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lderive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = derive_pt f1 x pr1 * f2 x + f1 x * derive_pt f2 x pr2f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lderivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lH3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 x pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:(fun l0 : R => derivable_pt_abs f2 x l0) (proj1_sig pr2)derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)apply derivable_pt_lim_mult; assumption. Qed.f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 xl1:RH:proj1_sig pr1 = l1l2:RH0:proj1_sig pr2 = l2l:RH1:derive_pt (f1 * f2) x (derivable_pt_mult f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:derivable_pt_abs f2 x l2derivable_pt_lim (f1 * f2) x (l1 * f2 x + f1 x * l2)forall a x : R, derive_pt (fct_cte a) x (derivable_pt_const a x) = 0forall a x : R, derive_pt (fct_cte a) x (derivable_pt_const a x) = 0a, x:Rderive_pt (fct_cte a) x (derivable_pt_const a x) = 0apply derivable_pt_lim_const. Qed.a, x:Rderivable_pt_lim (fct_cte a) x 0forall (f : R -> R) (a x : R) (pr : derivable_pt f x), derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prforall (f : R -> R) (a x : R) (pr : derivable_pt f x), derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xderive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xH:exists l : R, derive_pt f x pr = lderive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xH:exists l : R, derive_pt f x pr = lH0:exists l : R, derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = lderive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xH0:exists l : R, derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = ll1:RH:derive_pt f x pr = l1derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xl1:RH:derive_pt f x pr = l1l2:RH0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = a * derive_pt f x prf:R -> Ra, x:Rpr:derivable_pt f xl1:RH:derive_pt f x pr = l1l2:RH0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2derivable_pt_lim (mult_real_fct a f) x (a * l1)f:R -> Ra, x:Rpr:derivable_pt f xl1:RH:derive_pt f x pr = l1l2:RH0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2H3:(fun l : R => derivable_pt_abs f x l) (proj1_sig pr)derivable_pt_lim (mult_real_fct a f) x (a * l1)apply derivable_pt_lim_scal; assumption. Qed.f:R -> Ra, x:Rpr:derivable_pt f xl1:RH:proj1_sig pr = l1l2:RH0:derive_pt (mult_real_fct a f) x (derivable_pt_scal f a x pr) = l2H3:derivable_pt_abs f x l1derivable_pt_lim (mult_real_fct a f) x (a * l1)forall x : R, derive_pt id x (derivable_pt_id x) = 1forall x : R, derive_pt id x (derivable_pt_id x) = 1x:Rderive_pt id x (derivable_pt_id x) = 1apply derivable_pt_lim_id. Qed.x:Rderivable_pt_lim id x 1forall x : R, derive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * xforall x : R, derive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * xx:Rderive_pt Rsqr x (derivable_pt_Rsqr x) = 2 * xapply derivable_pt_lim_Rsqr. Qed.x:Rderivable_pt_lim Rsqr x (2 * x)forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 (f1 x)), derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1forall (f1 f2 : R -> R) (x : R) (pr1 : derivable_pt f1 x) (pr2 : derivable_pt f2 (f1 x)), derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)H:exists l : R, derive_pt f1 x pr1 = lderive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)H:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 (f1 x) pr2 = lderive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)H:exists l : R, derive_pt f1 x pr1 = lH0:exists l : R, derive_pt f2 (f1 x) pr2 = lH1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lderive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)H0:exists l : R, derive_pt f2 (f1 x) pr2 = lH1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)H1:exists l : R, derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = ll1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lderive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = derive_pt f2 (f1 x) pr2 * derive_pt f1 x pr1f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lderivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:derive_pt f1 x pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lH3:(fun l0 : R => derivable_pt_abs f1 x l0) (proj1_sig pr1)derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1derivable_pt_lim (f2 o f1) x (l2 * l1)f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:proj1_sig pr1 = l1l2:RH0:derive_pt f2 (f1 x) pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:(fun l0 : R => derivable_pt_abs f2 (f1 x) l0) (proj1_sig pr2)derivable_pt_lim (f2 o f1) x (l2 * l1)apply derivable_pt_lim_comp; assumption. Qed. (* Pow *) Definition pow_fct (n:nat) (y:R) : R := y ^ n.f1, f2:R -> Rx:Rpr1:derivable_pt f1 xpr2:derivable_pt f2 (f1 x)l1:RH:proj1_sig pr1 = l1l2:RH0:proj1_sig pr2 = l2l:RH1:derive_pt (f2 o f1) x (derivable_pt_comp f1 f2 x pr1 pr2) = lH3:derivable_pt_abs f1 x l1H4:derivable_pt_abs f2 (f1 x) l2derivable_pt_lim (f2 o f1) x (l2 * l1)forall (x : R) (n : nat), (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)forall (x : R) (n : nat), (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)x:Rn:natH:(0 < n)%natderivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)x:RH:(0 < 0)%natderivable_pt_lim (fun y : R => y ^ 0) x (INR 0 * x ^ Init.Nat.pred 0)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (fun y : R => y * 1) x (1 * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (id * fct_cte 1) x (1 * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (id * fct_cte 1) x (1 * fct_cte 1 x + id x * 0)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat1 * fct_cte 1 x + id x * 0 = 1 * 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim id x 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (fct_cte 1) x 0x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat1 * fct_cte 1 x + id x * 0 = 1 * 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%natderivable_pt_lim (fct_cte 1) x 0x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat1 * fct_cte 1 x + id x * 0 = 1 * 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat1 * fct_cte 1 x + id x * 0 = 1 * 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:n = 0%nat(id * fct_cte 1)%F = (fun y : R => y * 1)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y * y ^ n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (fun y : R => y * y ^ n) x (INR (S n) * x ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natderivable_pt_lim (id * (fun y : R => y ^ n)) x (INR (S n) * x ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> Rderivable_pt_lim (id * f) x (INR (S n) * x ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> Rderivable_pt_lim (id * f) x (1 * f x + id x * (INR n * x ^ Init.Nat.pred n))x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> Rderivable_pt_lim id x 1x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> Rderivable_pt_lim f x (INR n * x ^ Init.Nat.pred n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> Rderivable_pt_lim f x (INR n * x ^ Init.Nat.pred n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * f x + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * x ^ n + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * x ^ S (Init.Nat.pred n) + id x * (INR n * x ^ Init.Nat.pred n) = INR (S n) * x ^ S (Init.Nat.pred n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> RS (Init.Nat.pred n) = nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> R1 * (x * x ^ Init.Nat.pred n) + x * (INR n * x ^ Init.Nat.pred n) = (INR n + 1) * (x * x ^ Init.Nat.pred n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> RS (Init.Nat.pred n) = nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%natf:=fun y : R => y ^ n:R -> RS (Init.Nat.pred n) = nx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(id * (fun y : R => y ^ n))%F = (fun y : R => y * y ^ n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H0:n = 0%nat \/ (0 < n)%natH1:(0 < n)%nat(fun y : R => y * y ^ n) = (fun y : R => y ^ S n)x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)n = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)H1:0%nat = n0%nat = 0%nat \/ (0 < 0)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = nn = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = nn = 0%nat \/ (0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = n(0 < n)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = n(0 < 1)%natx:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = n(1 <= n)%natassumption. Qed.x:Rn:natH:(0 < S n)%natHrecn:(0 < n)%nat -> derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)m:natH1:(1 <= n)%natH0:m = n(1 <= n)%natforall (x : R) (n : nat), derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)forall (x : R) (n : nat), derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)x:Rn:natderivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)x:Rderivable_pt_lim (fun y : R => y ^ 0) x (INR 0 * x ^ Init.Nat.pred 0)x:Rn:natHrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rderivable_pt_lim (fun _ : R => 1) x (0 * 1)x:Rn:natHrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rderivable_pt_lim (fun _ : R => 1) x 0x:Rn:natHrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))x:Rn:natHrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)derivable_pt_lim (fun y : R => y ^ S n) x (INR (S n) * x ^ Init.Nat.pred (S n))apply lt_O_Sn. Qed.x:Rn:natHrecn:derivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)(0 < S n)%natforall (n : nat) (x : R), derivable_pt (fun y : R => y ^ n) xforall (n : nat) (x : R), derivable_pt (fun y : R => y ^ n) xn:natx:R{l : R | derivable_pt_abs (fun y : R => y ^ n) x l}apply derivable_pt_lim_pow. Qed.n:natx:Rderivable_pt_abs (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)forall n : nat, derivable (fun y : R => y ^ n)intro; unfold derivable; intro; apply derivable_pt_pow. Qed.forall n : nat, derivable (fun y : R => y ^ n)forall (n : nat) (x : R), derive_pt (fun y : R => y ^ n) x (derivable_pt_pow n x) = INR n * x ^ Init.Nat.pred nforall (n : nat) (x : R), derive_pt (fun y : R => y ^ n) x (derivable_pt_pow n x) = INR n * x ^ Init.Nat.pred napply derivable_pt_lim_pow. Qed.n:natx:Rderivable_pt_lim (fun y : R => y ^ n) x (INR n * x ^ Init.Nat.pred n)forall (f : R -> R) (x : R) (pr1 pr2 : derivable_pt f x), derive_pt f x pr1 = derive_pt f x pr2forall (f : R -> R) (x : R) (pr1 pr2 : derivable_pt f x), derive_pt f x pr1 = derive_pt f x pr2apply (uniqueness_limite f x x0 x1 H0 H1). Qed. (************************************************************)f:R -> Rx, x0:RH0:derivable_pt_abs f x x0x1:RH1:derivable_pt_abs f x x1derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x0 H0) = derive_pt f x (exist (fun l : R => derivable_pt_abs f x l) x1 H1)
(************************************************************)forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x <= f c) -> derive_pt f c pr = 0forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x <= f c) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 < derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 < derive_pt f c prH3:exists l : R, derive_pt f c pr = lderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < delta -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < b -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0- ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2- ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2- (l / 2) = - l + l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2- (l / 2) = - l + l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0H19:l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) < l / 2- (l / 2) = - (l / 2 + l / 2) + l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18, Hlt:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2)) = - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0H19:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Hge:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l >= 0H19:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < l / 2H20:0 <= (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - lderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0H18:(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0(f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) < - 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) = (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0H17:- l < 0- (l + - ((f (c + Rmin (delta / 2) ((b + - c) / 2)) - f c) / Rmin (delta / 2) ((b + - c) / 2))) = (f (c + Rmin (delta / 2) ((b + - c) / 2)) + - f c) / Rmin (delta / 2) ((b + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0- l < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c(f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) <= 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) = (f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- ((f c - f (c + Rmin (delta / 2) ((b - c) / 2))) / Rmin (delta / 2) ((b - c) / 2)) = (f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- ((f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) * / Rmin (delta * / 2) ((b - c) * / 2)) = (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c) * / Rmin (delta * / 2) ((b - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) * / Rmin (delta * / 2) ((b - c) * / 2) = (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c) * / Rmin (delta * / 2) ((b - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c/ Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = / Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) * (/ Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2)))) = Rmin (delta * / 2) ((b - c) * / 2) * (/ Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c))f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) * / Rmin (delta * / 2) ((b - c) * / 2) * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = Rmin (delta * / 2) ((b - c) * / 2) * / Rmin (delta * / 2) ((b - c) * / 2) * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c1 * - (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = 1 * (f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f c- (f c - f (c + Rmin (delta * / 2) ((b - c) * / 2))) = f (c + Rmin (delta * / 2) ((b - c) * / 2)) - f cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:Rmin (delta * / 2) ((b - c) * / 2) = 0Falsef:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cRmin (delta * / 2) ((b - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:c + Rmin (delta / 2) ((b - c) / 2) < bH15:f (c + Rmin (delta / 2) ((b - c) / 2)) <= f cH16:Rmin (delta * / 2) ((b - c) * / 2) = 0Falsef:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + Rmin (delta / 2) ((b - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + (b - c) / 2 < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + (b - c) / 2 < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 20 < 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 22 * (c + (b - c) / 2) < 2 * bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 22 * (c + (b - c) / 2) < 2 * bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b < 2 * bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = 2 * (c + (b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b < b + bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2b + b = 2 * bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = 2 * (c + (b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2b + b = 2 * bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = 2 * (c + (b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = 2 * (c + (b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = 2 * c + 2 * ((b - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = c * 2 + (b - c) * / 2 * 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = c * 2 + (b - c) * 1f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 2c + b = c * 2 + (b - c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)H13:a < c + Rmin (delta / 2) ((b - c) / 2)H14:Rmin (delta / 2) ((b - c) / 2) <= (b - c) / 2H15:c + Rmin (delta / 2) ((b - c) / 2) <= c + (b - c) / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)a < cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)c < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 2H12:0 < Rmin (delta / 2) ((b - c) / 2)c < c + Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < delta / 2 -> 0 < Rmin (delta / 2) ((b - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0H10:Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaH11:Rabs ((f (c + Rmin (delta / 2) ((b - c) / 2)) - f c) / Rmin (delta / 2) ((b - c) / 2) - l) < l / 20 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Rabs (Rmin (delta / 2) ((b - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 0- Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 00 < delta / 2 -> - Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 00 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 0H10:0 < delta / 2- Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 00 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hlt:Rmin (delta / 2) ((b - c) / 2) < 00 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0Rmin (delta / 2) ((b - c) / 2) <= delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta / 2 < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta / 2 < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 00 < 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 * (delta * / 2) < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 * (delta * / 2) < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 01 * delta < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta < delta + deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta + delta = 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 00 < delta + 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta + delta = 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 0delta + delta = 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2H9:Rmin (delta / 2) ((b - c) / 2) <> 0Hge:Rmin (delta / 2) ((b - c) / 2) >= 02 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 2Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 20 < delta / 2 -> Rmin (delta / 2) ((b - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 20 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 2H8:0 < (b - c) / 20 < delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < (b - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < b - cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cl:RH2:0 < lH3:exists l0 : R, derive_pt f c pr = l0H4:derive_pt f c pr = lH5:derivable_pt_lim f c lH6:0 < l / 2delta:posrealH7:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < l / 20 < / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prH3:0 = derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prH3:0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prH3:0 > derive_pt f c prderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prH3:0 > derive_pt f c prH4:exists l0 : R, derive_pt f c pr = l0l:RH5:derive_pt f c pr = lderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < delta -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < b -> a < c + Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - l -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHlt:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < 0- ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 < 0 -> (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) < l / 2 -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lHge:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l >= 0H20:(f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l < - (l / 2)l / 2 = - (l / 2) + (l / 2 + l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - lH19:0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lRabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)H18:0 < - l0 < (f (c + Rmax (- (delta / 2)) ((a + - c) / 2)) + - f c) / Rmax (- (delta / 2)) ((a + - c) / 2) + - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cH17:0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= (f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= - f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c -> 0 <= - f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c = - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) + f c = - (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c0 <= / - Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / - Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c- (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * - / Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cRmax (- (delta * / 2)) ((a - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f c(f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2) = (f (c + Rmax (- (delta * / 2)) ((a - c) * / 2)) - f c) * / Rmax (- (delta * / 2)) ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cRmax (- (delta * / 2)) ((a - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:c + Rmax (- (delta / 2)) ((a - c) / 2) < bH15:a < c + Rmax (- (delta / 2)) ((a - c) / 2)H16:f (c + Rmax (- (delta / 2)) ((a - c) / 2)) <= f cRmax (- (delta * / 2)) ((a - c) * / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)c + Rmax (- (delta / 2)) ((a - c) / 2) < bf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)a < c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)a < c + (a - c) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)0 < 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)2 * a < 2 * (c + (a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)2 * a < 2 * (c + (a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)2 * a < a + cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)a + c = 2 * (c + (a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)a + a < a + cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)a + c = 2 * (c + (a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)a + c = 2 * (c + (a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0H12:Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaH13:Rabs ((f (c + Rmax (- (delta / 2)) ((a - c) / 2)) - f c) / Rmax (- (delta / 2)) ((a - c) / 2) - l) < - (l / 2)H14:(a - c) / 2 <= Rmax (- (delta / 2)) ((a - c) / 2)H15:c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)c + (a - c) / 2 <= c + Rmax (- (delta / 2)) ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Rabs (Rmax (- (delta / 2)) ((a - c) / 2)) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0- Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2delta / 2 < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2delta / 2 < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 20 < 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 22 * (delta / 2) < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 22 * (delta / 2) < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 21 * delta < 2 * deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 2delta < delta + deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hlt:Rmax (- (delta / 2)) ((a - c) / 2) < 0H12:- (delta / 2) <= Rmax (- (delta / 2)) ((a - c) / 2)H13:delta / 2 >= - Rmax (- (delta / 2)) ((a - c) / 2)H14:- Rmax (- (delta / 2)) ((a - c) / 2) <= delta / 22 <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(a - c) / 2 < 0 -> - (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < deltaf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 00 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(c - a) / 2 = - ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(c - a) / 2 = - ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(c - a) * / 2 = - ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(c - a) * / 2 = - (a - c) * / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0(c - a) * / 2 = (c - a) * / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0H11:Rmax (- (delta / 2)) ((a - c) / 2) <> 0Hge:Rmax (- (delta / 2)) ((a - c) / 2) >= 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:Rmax (- (delta / 2)) ((a - c) / 2) < 0Rmax (- (delta / 2)) ((a - c) / 2) <> 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(a - c) / 2 < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:(a - c) / 2 < 0- (delta / 2) < 0 -> Rmax (- (delta / 2)) ((a - c) / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:(a - c) / 2 < 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2H10:(a - c) / 2 < 0- (delta / 2) < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(a - c) / 2 < 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 20 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(c - a) / 2 = - ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(c - a) / 2 = - ((a - c) / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(c - a) * / 2 = - ((a - c) * / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(c - a) * / 2 = - (a - c) * / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)H8:0 < (c - a) / 2(c - a) * / 2 = (c - a) * / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c lH7:0 < - (l / 2)delta:posrealH9:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (c + h) - f c) / h - l) < - (l / 2)0 < (c - a) / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - l / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l- l / 2 = - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < - lf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l- l / 2 = - (l / 2)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l0 < / 2f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l- l / 2 = - (l / 2)unfold Rdiv; apply Ropp_mult_distr_l_reverse. Qed.f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x <= f cH2:0 = derive_pt f c pr \/ 0 > derive_pt f c prl:RH3:0 > lH4:exists l0 : R, derive_pt f c pr = l0H5:derive_pt f c pr = lH6:derivable_pt_lim f c l- l / 2 = - (l / 2)forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f c <= f x) -> derive_pt f c pr = 0forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f c <= f x) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xderive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f x- - derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f x- derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xderive_pt (- f) c (derivable_pt_opp f c pr) = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f x(forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F c) -> derive_pt (- f) c (derivable_pt_opp f c pr) = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xforall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xH2:forall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F cderive_pt (- f) c (derivable_pt_opp f c pr) = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xforall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F cf:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f c <= f xforall x : R, a < x -> x < b -> (- f)%F x <= (- f)%F capply (H1 x H2 H3). Qed.f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x0 : R, a < x0 -> x0 < b -> f c <= f x0x:RH2:a < xH3:x < bf c <= f xforall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x = f c) -> derive_pt f c pr = 0forall (f : R -> R) (a b c : R) (pr : derivable_pt f c), a < c -> c < b -> (forall x : R, a < x -> x < b -> f x = f c) -> derive_pt f c pr = 0f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x = f cderive_pt f c pr = 0intros; right; apply (H1 x H2 H3). Qed. (**********)f:R -> Ra, b, c:Rpr:derivable_pt f cH:a < cH0:c < bH1:forall x : R, a < x -> x < b -> f x = f cforall x : R, a < x -> x < b -> f x <= f cforall (f : R -> R) (pr : derivable f), increasing f -> forall x : R, 0 <= derive_pt f x (pr x)forall (f : R -> R) (pr : derivable f), increasing f -> forall x : R, 0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:R0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l : R, derive_pt f x (pr x) = l0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = l0 <= derive_pt f x (pr x)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 < l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 = l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < delta -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2) -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - l -> Rabs ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHlt:(f (x + delta / 2) - f x) / (delta / 2) - l < 0- ((f (x + delta / 2) - f x) / (delta / 2) - l) < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2) -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)(f (x + delta / 2) + - f x) / (delta / 2) + - l + l < l / 2 -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2H15:0 < l / 2l / 2 < 0 -> 0 <= lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2H15:0 < l / 2l / 2 < 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)H14:(f (x + delta / 2) + - f x) / (delta / 2) < l / 2H15:0 < l / 2l / 2 < 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)l / 2 = - (l / 2) + lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)H12:0 <= (f (x + delta / 2) - f x) / (delta / 2) - lHge:(f (x + delta / 2) - f x) / (delta / 2) - l >= 0H13:(f (x + delta / 2) - f x) / (delta / 2) - l < - (l / 2)l / 2 = - (l / 2) + (l / 2 + l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) - f x) / (delta / 2) - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= (f (x + delta / 2) + - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= f (x + delta * / 2) + - f xf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)x <= x + delta * / 2 -> 0 <= f (x + delta * / 2) + - f xf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)x <= x + delta * / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)x <= x + delta * / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltaH9:0 <= (f (x + delta / 2) - f x) / (delta / 2)0 <= - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= (f (x + delta / 2) - f x) / (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= f (x + delta * / 2) - f xf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltax <= x + delta * / 2 -> 0 <= f (x + delta * / 2) - f xf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltax <= x + delta * / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < deltax <= x + delta * / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)H7:delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaH8:delta / 2 <> 0H10:0 < delta / 2H11:Rabs (delta / 2) < delta0 <= / (delta * / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0 /\ 0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 <> 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta <> 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)/ 2 <> 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)/ 2 <> 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < delta / 2 /\ Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < delta / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)Rabs (delta / 2) < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 < deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)0 < 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)2 * (delta * / 2) < 2 * deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)2 * (delta * / 2) < 2 * deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta * / 2 * 2 < 2 * deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta * 1 < 2 * deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta < 2 * deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta < delta + deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta + 0 < delta + deltaf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 = Rabs (delta / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x lH5:0 < - (l / 2)delta:posrealH6:forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((f (x + h) - f x) / h - l) < - (l / 2)delta / 2 >= 0f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - (l / 2)f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < / 2f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x ll + 0 < l + - lf:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < / 2apply Rinv_0_lt_compat; prove_sup0. Qed.f:R -> Rpr:derivable fH:forall x0 y : R, x0 <= y -> f x0 <= f yx:RH0:exists l0 : R, derive_pt f x (pr x) = l0l:RH1:derive_pt f x (pr x) = lH2:0 = l \/ 0 > lH3:0 > lH4:derivable_pt_lim f x l0 < / 2