Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) Require Import Rbase. Require Import Rfunctions. Require Import SeqSeries. Require Import Rtrigo1. Require Import Ranalysis1. Require Import Ranalysis3. Require Import Exp_prop. Require Import MVT. Local Open Scope R_scope. (**********)forall (f : R -> R) (x : R), f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) xforall (f : R -> R) (x : R), f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f x(derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x) -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xderivable_pt (fct_cte 1 / f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xderivable_pt (fct_cte 1) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xderivable_pt f xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf x <> 0f:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xderivable_pt f xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf x <> 0f:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xX0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf x <> 0f:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xf:R -> Rx:RH:f x <> 0X:derivable_pt f xderivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) xapply H1; assumption. Qed. (**********)f:R -> Rx:RH:f x <> 0X:derivable_pt f xx0:Rp:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((1 / f (x + h0) - 1 / f x) / h0 - x0) < eps0eps:RH0:0 < epsx1:posrealH1:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((1 * / f (x + h0) - 1 * / f x) * / h0 - x0) < epsh:RH2:h <> 0H3:Rabs h < x1Rabs ((1 * / f (x + h) - 1 * / f x) * / h - x0) < epsforall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2apply uniqueness_limite with g x; assumption. Qed. (**********)g:R -> Rx, x0:Rp0:derivable_pt_abs g x x0x1:Rp1:derivable_pt_abs g x x1proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), (forall h : R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), (forall h : R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hproj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0 -> proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0H3:x0 = x1proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, x2 <> 0 /\ Rabs (x2 - 0) < alp -> Rabs ((g (x + x2) - g x) / x2 - x1) < eps)forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, x2 <> 0 /\ Rabs (x2 - 0) < alp -> Rabs ((f (x + x2) - f x) / x2 - x1) < eps)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)H4:x2 > 0H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < epsexists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)H4:x2 > 0H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < epsx2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)H4:x2 > 0H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < epsx2 > 0f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)H4:x2 > 0H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < epsforall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < epsintros; do 2 rewrite H; apply H5; assumption. Qed. (**********)f, g:R -> Rx, x0:Rp0:derivable_pt_abs f x x0x1:Rp1:derivable_pt_abs g x x1H:forall h : R, f h = g hH0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)eps:RH2:eps > 0x2:RH3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)H4:x2 > 0H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < epsforall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < epsforall f : R -> R, (forall x : R, f x <> 0) -> derivable f -> derivable (/ f)forall f : R -> R, (forall x : R, f x <> 0) -> derivable f -> derivable (/ f)f:R -> RH:forall x : R, f x <> 0X:derivable fderivable (/ f)f:R -> RH:forall x0 : R, f x0 <> 0X:derivable fx:Rderivable_pt (/ f) xf:R -> RH:forall x0 : R, f x0 <> 0X:derivable fx:Rf x <> 0f:R -> RH:forall x0 : R, f x0 <> 0X:derivable fx:Rderivable_pt f xapply (X x). Qed.f:R -> RH:forall x0 : R, f x0 <> 0X:derivable fx:Rderivable_pt f xforall (f : R -> R) (x : R) (pr : derivable_pt f x) (na : f x <> 0), derive_pt (/ f) x (derivable_pt_inv f x na pr) = - derive_pt f x pr / (f x)²forall (f : R -> R) (x : R) (pr : derivable_pt f x) (na : f x <> 0), derive_pt (/ f) x (derivable_pt_inv f x na pr) = - derive_pt f x pr / (f x)²f:R -> Rx:Rpr:derivable_pt f xna:f x <> 0derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = - derive_pt f x pr / (f x)²f:R -> Rx:Rpr:derivable_pt f xna:f x <> 0derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = derive_pt (/ f) x (derivable_pt_inv f x na pr)f:R -> Rx:Rpr:derivable_pt f xna:f x <> 0derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = derive_pt (/ f) x (derivable_pt_inv f x na pr)f:R -> Rx:Rpr:derivable_pt f xna:f x <> 0forall h : R, (fct_cte 1 / f)%F h = (/ f)%F hunfold Rdiv; ring. Qed.f:R -> Rx:Rpr:derivable_pt f xna:f x <> 0h:R1 / f h = / f h
Rabsolu
forall x : R, 0 < x -> derivable_pt_lim Rabs x 1forall x : R, 0 < x -> derivable_pt_lim Rabs x 1x:RH:0 < xderivable_pt_lim Rabs x 1x:RH:0 < xeps:RH0:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - 1) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs ((Rabs (x + h) - Rabs x) / h - 1) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs ((Rabs (x + h) - x) / h - 1) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs ((x + h - x) / h - 1) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs ((h + x - x) / h - 1) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs ((h + 0) / h + - (1)) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Rabs (1 + - (1)) < epsx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}h <> 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}h <> 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x + h >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}0 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hlt:h < 00 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:- h < {| pos := x; cond_pos := H |}Hlt:h < 00 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= x + hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= xx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}Hgt:h >= 00 <= hx:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0left; apply H. Qed.x:RH:0 < xeps:RH0:0 < epsh:RH1:h <> 0H2:Rabs h < {| pos := x; cond_pos := H |}x >= 0forall x : R, x < 0 -> derivable_pt_lim Rabs x (-1)forall x : R, x < 0 -> derivable_pt_lim Rabs x (-1)x:RH:x < 0derivable_pt_lim Rabs x (-1)x:RH:x < 0eps:RH0:0 < epsexists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - -1) < epsx:RH:x < 0eps:RH0:0 < eps0 < - x -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - -1) < epsx:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Rabs ((Rabs (x + h) - Rabs x) / h - -1) < epsx:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Rabs ((Rabs (x + h) - - x) / h - -1) < epsx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Rabs ((- (x + h) - - x) / h - -1) < epsx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Rabs 0 < epsx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hlt:h < 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hlt:h < 0- 0 < - (x + h)x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hlt:h < 00 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hlt:h < 00 < - hx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hlt:h < 00 < - hx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:h < {| pos := - x; cond_pos := H1 |}Hgt:h >= 0x + h < 0x:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xx:RH:x < 0eps:RH0:0 < epsH1:0 < - xh:RH2:h <> 0H3:Rabs h < {| pos := - x; cond_pos := H1 |}x < 0x:RH:x < 0eps:RH0:0 < eps0 < - xapply Ropp_0_gt_lt_contravar; apply H. Qed.x:RH:x < 0eps:RH0:0 < eps0 < - x
Rabsolu is derivable for all x <> 0
forall x : R, x <> 0 -> derivable_pt Rabs xforall x : R, x <> 0 -> derivable_pt Rabs xx:RH:x <> 0derivable_pt Rabs xx:RH:x <> 0Hlt:x < 0derivable_pt Rabs xx:RH:x <> 0Heq:x = 0derivable_pt Rabs xx:RH:x <> 0Hgt:x > 0derivable_pt Rabs xx:RH:x <> 0Hlt:x < 0derivable_pt_abs Rabs x (-1)x:RH:x <> 0Heq:x = 0derivable_pt Rabs xx:RH:x <> 0Hgt:x > 0derivable_pt Rabs xx:RH:x <> 0Heq:x = 0derivable_pt Rabs xx:RH:x <> 0Hgt:x > 0derivable_pt Rabs xx:RH:x <> 0Hgt:x > 0derivable_pt Rabs xapply (Rabs_derive_1 x Hgt). Qed.x:RH:x <> 0Hgt:x > 0derivable_pt_abs Rabs x 1
Rabsolu is continuous for all x
continuity Rabscontinuity Rabsx:Rcontinuity_pt Rabs xx:RH:x = 0continuity_pt Rabs xx:RH:x <> 0continuity_pt Rabs xx:RH:x = 0eps:RH0:eps > 0eps > 0x:RH:x = 0eps:RH0:eps > 0forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps -> Rabs (Rabs x0 - Rabs x) < epsx:RH:x <> 0continuity_pt Rabs xx:RH:x = 0eps:RH0:eps > 0forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps -> Rabs (Rabs x0 - Rabs x) < epsx:RH:x <> 0continuity_pt Rabs xapply derivable_continuous_pt; apply (Rderivable_pt_abs x H). Qed.x:RH:x <> 0continuity_pt Rabs x
Finite sums : Sum a_k x^k
forall (An : nat -> R) (N : nat), continuity (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)forall (An : nat -> R) (N : nat), continuity (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)An:nat -> RN:natx:Rcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xAn:nat -> Rx:Rcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) xAn:nat -> Rx:Rcontinuity_pt (fun _ : R => An 0%nat * 1) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) xAn:nat -> Rx:Rconstant (fun _ : R => An 0%nat * 1)An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => An (S N) * y ^ S N) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => An (S N) * y ^ S N) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (mult_real_fct (An (S N)) (fun y : R => y ^ S N)) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xcontinuity_pt (fun y : R => y ^ S N) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xderivable_pt (fun y : R => y ^ S N) xAn:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))reflexivity. Qed.An:nat -> RN:natx:RHrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))forall (An : nat -> R) (x : R) (N : nat), (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))forall (An : nat -> R) (x : R) (N : nat), (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))An:nat -> Rx:RH:(0 < 0)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred 0))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 1) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1)) x (1 * An 1%nat * 1)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1)) x (1 * An 1%nat * 1)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1)) x (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fct_cte (An 0%nat * 1)) x 0An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (mult_real_fct (An 1%nat) (id * fct_cte 1)) x (An 1%nat * (1 * fct_cte 1 x + id x * 0))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (mult_real_fct (An 1%nat) (id * fct_cte 1)) x (An 1%nat * (1 * fct_cte 1 x + id x * 0))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (id * fct_cte 1) x (1 * fct_cte 1 x + id x * 0)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim id x 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fct_cte 1) x 0An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%natderivable_pt_lim (fct_cte 1) x 0An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:N = 0%nat(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat(0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (mult_real_fct (An (S N)) (fun y : R => y ^ S N)) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => y ^ S N) x (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => y ^ S N) x (INR (S N) * x ^ N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natderivable_pt_lim (fun y : R => y ^ S N) x (INR (S N) * x ^ Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = NAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = NAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natmult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natsum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N) -> sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natH2:Init.Nat.pred (S N) = S (Init.Nat.pred N)sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (S (Init.Nat.pred N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natH2:Init.Nat.pred (S N) = S (Init.Nat.pred N)sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + INR (S (S (Init.Nat.pred N))) * An (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natH2:Init.Nat.pred (S N) = S (Init.Nat.pred N)An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = INR (S (S (Init.Nat.pred N))) * An (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natH2:Init.Nat.pred (S N) = S (Init.Nat.pred N)An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = INR (S (Init.Nat.pred (S N))) * An (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natH2:Init.Nat.pred (S N) = S (Init.Nat.pred N)An (S N) * (INR (S N) * x ^ N) = INR (S N) * An (S N) * x ^ NAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natInit.Nat.pred (S N) = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%natN = S (Init.Nat.pred N)An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H0:N = 0%nat \/ (0 < N)%natH1:(0 < N)%nat(fun x0 : R => sum_f_R0 (fun k : nat => An k * x0 ^ k) N + An (S N) * x0 ^ S N) = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))N = 0%nat \/ (0 < N)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))H1:0%nat = N0%nat = 0%nat \/ (0 < 0)%natAn:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))m:natH1:(1 <= N)%natH0:m = NN = 0%nat \/ (0 < N)%natright; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. Qed.An:nat -> Rx:RN:natH:(0 < S N)%natHrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))m:natH1:(1 <= N)%natH0:m = NN = 0%nat \/ (0 < N)%natforall (An : nat -> R) (x : R) (N : nat), derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endforall (An : nat -> R) (x : R) (N : nat), derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endAn:nat -> Rx:RN:natderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endAn:nat -> Rx:Rderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x 0An:nat -> Rx:RN:natHrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:Rderivable_pt_lim (fun _ : R => An 0%nat * 1) x 0An:nat -> Rx:RN:natHrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))An:nat -> Rx:Rderivable_pt_lim (fun _ : R => An 0%nat) x 0An:nat -> Rx:RN:natHrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))apply derivable_pt_lim_fs; apply lt_O_Sn. Qed.An:nat -> Rx:RN:natHrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) endderivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))forall (An : nat -> R) (N : nat) (x : R), derivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xforall (An : nat -> R) (N : nat) (x : R), derivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xAn:nat -> RN:natx:Rderivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) xAn:nat -> RN:natx:R{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}An:nat -> RN:natx:RH:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}An:nat -> Rx:RH:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x 0{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x l}An:nat -> RN:natx:RH:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end -> {l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x l}exists (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))); apply H. Qed.An:nat -> RN:natx:RH:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end -> {l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x l}forall (An : nat -> R) (N : nat), derivable (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)intros; unfold derivable; intro; apply derivable_pt_finite_sum. Qed.forall (An : nat -> R) (N : nat), derivable (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)
Regularity of hyperbolic functions
forall x : R, derivable_pt_lim cosh x (sinh x)forall x : R, derivable_pt_lim cosh x (sinh x)x:Rderivable_pt_lim cosh x (sinh x)x:Rderivable_pt_lim (fun x0 : R => (exp x0 + exp (- x0)) * / 2) x ((exp x - exp (- x)) * / 2)x:Rderivable_pt_lim ((exp + comp exp (- id)) * fct_cte (/ 2)) x ((exp x - exp (- x)) * / 2)x:Rderivable_pt_lim ((exp + comp exp (- id)) * fct_cte (/ 2)) x ((exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0)x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim (exp + comp exp (- id)) x (exp x + exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim exp x (exp x)x:Rderivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim (- id) x (-1)x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim id x (IPR 1)x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed.x:R(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2forall x : R, derivable_pt_lim sinh x (cosh x)forall x : R, derivable_pt_lim sinh x (cosh x)x:Rderivable_pt_lim sinh x (cosh x)x:Rderivable_pt_lim (fun x0 : R => (exp x0 - exp (- x0)) * / 2) x ((exp x + exp (- x)) * / 2)x:Rderivable_pt_lim ((exp - comp exp (- id)) * fct_cte (/ 2)) x ((exp x + exp (- x)) * / 2)x:Rderivable_pt_lim ((exp - comp exp (- id)) * fct_cte (/ 2)) x ((exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0)x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim (exp - comp exp (- id)) x (exp x - exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim exp x (exp x)x:Rderivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim (- id) x (-1)x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim id x (IPR 1)x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim exp ((- id)%F x) (exp (- x))x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2x:Rderivable_pt_lim (fct_cte (/ 2)) x 0x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed.x:R(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2forall x : R, derivable_pt exp xforall x : R, derivable_pt exp xx:Rderivable_pt exp xx:R{l : R | derivable_pt_abs exp x l}apply derivable_pt_lim_exp. Qed.x:Rderivable_pt_abs exp x (exp x)forall x : R, derivable_pt cosh xforall x : R, derivable_pt cosh xx:Rderivable_pt cosh xx:R{l : R | derivable_pt_abs cosh x l}apply derivable_pt_lim_cosh. Qed.x:Rderivable_pt_abs cosh x (sinh x)forall x : R, derivable_pt sinh xforall x : R, derivable_pt sinh xx:Rderivable_pt sinh xx:R{l : R | derivable_pt_abs sinh x l}apply derivable_pt_lim_sinh. Qed.x:Rderivable_pt_abs sinh x (cosh x)derivable expunfold derivable; apply derivable_pt_exp. Qed.derivable expderivable coshunfold derivable; apply derivable_pt_cosh. Qed.derivable coshderivable sinhunfold derivable; apply derivable_pt_sinh. Qed.derivable sinhforall x : R, derive_pt exp x (derivable_pt_exp x) = exp xforall x : R, derive_pt exp x (derivable_pt_exp x) = exp xapply derivable_pt_lim_exp. Qed.x:Rderivable_pt_lim exp x (exp x)forall x : R, derive_pt cosh x (derivable_pt_cosh x) = sinh xforall x : R, derive_pt cosh x (derivable_pt_cosh x) = sinh xapply derivable_pt_lim_cosh. Qed.x:Rderivable_pt_lim cosh x (sinh x)forall x : R, derive_pt sinh x (derivable_pt_sinh x) = cosh xforall x : R, derive_pt sinh x (derivable_pt_sinh x) = cosh xapply derivable_pt_lim_sinh. Qed.x:Rderivable_pt_lim sinh x (cosh x)forall x y : R, x < y -> sinh x < sinh yx, y:Rxy:x < yforall c : R, x <= c <= y -> derivable_pt_lim sinh c (cosh c)x, y:Rxy:x < yc:RPc:sinh y - sinh x = cosh c * (y - x)sinh x < sinh yx, y:Rxy:x < yc:RPc:sinh y - sinh x = cosh c * (y - x)sinh x < sinh yx, y:Rxy:x < yc:RPc:sinh y - sinh x = cosh c * (y - x)0 < sinh y + - sinh xx, y:Rxy:x < yc:RPc:sinh y + - sinh x = cosh c * (y - x)0 < cosh cx, y:Rxy:x < yc:RPc:sinh y + - sinh x = cosh c * (y - x)0 < y - xx, y:Rxy:x < yc:RPc:sinh y + - sinh x = cosh c * (y - x)0 < exp c + exp (- c)x, y:Rxy:x < yc:RPc:sinh y + - sinh x = cosh c * (y - x)0 < y - xnow apply Rlt_Rminus; assumption. Qed.x, y:Rxy:x < yc:RPc:sinh y + - sinh x = cosh c * (y - x)0 < y - x