Built with Alectryon, running Coq+SerAPI v8.10.0+0.7.0. Coq sources are in this panel; goals and messages will appear in the other. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑ Ctrl+↓ to navigate, Ctrl+🖱️ to focus.
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

Require Import Rbase.
Require Import Rfunctions.
Require Import SeqSeries.
Require Import Rtrigo1.
Require Import Ranalysis1.
Require Import Ranalysis3.
Require Import Exp_prop.
Require Import MVT.
Local Open Scope R_scope.

(**********)

forall (f : R -> R) (x : R), f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x

forall (f : R -> R) (x : R), f x <> 0 -> derivable_pt f x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x

(derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x) -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x

derivable_pt (fct_cte 1 / f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x

derivable_pt (fct_cte 1) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
derivable_pt f x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f x <> 0
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x

derivable_pt f x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f x <> 0
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
X0:derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x

f x <> 0
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x

derivable_pt (fct_cte 1 / f) x -> derivable_pt (/ f) x
f:R -> R
x:R
H:f x <> 0
X:derivable_pt f x
x0:R
p:forall eps0 : R, 0 < eps0 -> exists delta : posreal, forall h0 : R, h0 <> 0 -> Rabs h0 < delta -> Rabs ((1 / f (x + h0) - 1 / f x) / h0 - x0) < eps0
eps:R
H0:0 < eps
x1:posreal
H1:forall h0 : R, h0 <> 0 -> Rabs h0 < x1 -> Rabs ((1 * / f (x + h0) - 1 * / f x) * / h0 - x0) < eps
h:R
H2:h <> 0
H3:Rabs h < x1

Rabs ((1 * / f (x + h) - 1 * / f x) * / h - x0) < eps
apply H1; assumption. Qed. (**********)

forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2

forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), f = g -> derive_pt f x pr1 = derive_pt g x pr2
g:R -> R
x, x0:R
p0:derivable_pt_abs g x x0
x1:R
p1:derivable_pt_abs g x x1

proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
apply uniqueness_limite with g x; assumption. Qed. (**********)

forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), (forall h : R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2

forall (f g : R -> R) (x : R) (pr1 : derivable_pt f x) (pr2 : derivable_pt g x), (forall h : R, f h = g h) -> derive_pt f x pr1 = derive_pt g x pr2
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h

proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0

proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0

proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0

limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0 -> proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0
limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0
H2:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0
H3:x0 = x1

proj1_sig (exist (fun l : R => derivable_pt_abs f x l) x0 p0) = proj1_sig (exist (fun l : R => derivable_pt_abs g x l) x1 p1)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0
limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:limit1_in (fun h : R => (g (x + h) - g x) / h) (fun h : R => h <> 0) x1 0

limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x1 0
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, x2 <> 0 /\ Rabs (x2 - 0) < alp -> Rabs ((g (x + x2) - g x) / x2 - x1) < eps)

forall eps : R, eps > 0 -> exists alp : R, alp > 0 /\ (forall x2 : R, x2 <> 0 /\ Rabs (x2 - 0) < alp -> Rabs ((f (x + x2) - f x) / x2 - x1) < eps)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)

exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)
H4:x2 > 0
H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps

exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)
H4:x2 > 0
H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps

x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps)
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)
H4:x2 > 0
H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps

x2 > 0
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)
H4:x2 > 0
H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps
forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps
f, g:R -> R
x, x0:R
p0:derivable_pt_abs f x x0
x1:R
p1:derivable_pt_abs g x x1
H:forall h : R, f h = g h
H0:limit1_in (fun h : R => (f (x + h) - f x) / h) (fun h : R => h <> 0) x0 0
H1:forall eps0 : R, eps0 > 0 -> exists alp : R, alp > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < alp -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps0)
eps:R
H2:eps > 0
x2:R
H3:x2 > 0 /\ (forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps)
H4:x2 > 0
H5:forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((g (x + x3) - g x) / x3 - x1) < eps

forall x3 : R, x3 <> 0 /\ Rabs (x3 - 0) < x2 -> Rabs ((f (x + x3) - f x) / x3 - x1) < eps
intros; do 2 rewrite H; apply H5; assumption. Qed. (**********)

forall f : R -> R, (forall x : R, f x <> 0) -> derivable f -> derivable (/ f)

forall f : R -> R, (forall x : R, f x <> 0) -> derivable f -> derivable (/ f)
f:R -> R
H:forall x : R, f x <> 0
X:derivable f

derivable (/ f)
f:R -> R
H:forall x0 : R, f x0 <> 0
X:derivable f
x:R

derivable_pt (/ f) x
f:R -> R
H:forall x0 : R, f x0 <> 0
X:derivable f
x:R

f x <> 0
f:R -> R
H:forall x0 : R, f x0 <> 0
X:derivable f
x:R
derivable_pt f x
f:R -> R
H:forall x0 : R, f x0 <> 0
X:derivable f
x:R

derivable_pt f x
apply (X x). Qed.

forall (f : R -> R) (x : R) (pr : derivable_pt f x) (na : f x <> 0), derive_pt (/ f) x (derivable_pt_inv f x na pr) = - derive_pt f x pr / (f x)²

forall (f : R -> R) (x : R) (pr : derivable_pt f x) (na : f x <> 0), derive_pt (/ f) x (derivable_pt_inv f x na pr) = - derive_pt f x pr / (f x)²
f:R -> R
x:R
pr:derivable_pt f x
na:f x <> 0

derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = - derive_pt f x pr / (f x)²
f:R -> R
x:R
pr:derivable_pt f x
na:f x <> 0
derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = derive_pt (/ f) x (derivable_pt_inv f x na pr)
f:R -> R
x:R
pr:derivable_pt f x
na:f x <> 0

derive_pt (fct_cte 1 / f) x (derivable_pt_div (fct_cte 1) f x (derivable_pt_const 1 x) pr na) = derive_pt (/ f) x (derivable_pt_inv f x na pr)
f:R -> R
x:R
pr:derivable_pt f x
na:f x <> 0

forall h : R, (fct_cte 1 / f)%F h = (/ f)%F h
f:R -> R
x:R
pr:derivable_pt f x
na:f x <> 0
h:R

1 / f h = / f h
unfold Rdiv; ring. Qed.
Rabsolu

forall x : R, 0 < x -> derivable_pt_lim Rabs x 1

forall x : R, 0 < x -> derivable_pt_lim Rabs x 1
x:R
H:0 < x

derivable_pt_lim Rabs x 1
x:R
H:0 < x
eps:R
H0:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - 1) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs ((Rabs (x + h) - Rabs x) / h - 1) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs ((Rabs (x + h) - x) / h - 1) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs ((x + h - x) / h - 1) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs ((h + x - x) / h - 1) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs ((h + 0) / h + - (1)) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

Rabs (1 + - (1)) < eps
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
h <> 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

h <> 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

x + h >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hlt:h < 0

0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:- h < {| pos := x; cond_pos := H |}
Hlt:h < 0

0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0
0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0

0 <= x + h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0

0 <= x
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0
0 <= h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
Hgt:h >= 0

0 <= h
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}
x >= 0
x:R
H:0 < x
eps:R
H0:0 < eps
h:R
H1:h <> 0
H2:Rabs h < {| pos := x; cond_pos := H |}

x >= 0
left; apply H. Qed.

forall x : R, x < 0 -> derivable_pt_lim Rabs x (-1)

forall x : R, x < 0 -> derivable_pt_lim Rabs x (-1)
x:R
H:x < 0

derivable_pt_lim Rabs x (-1)
x:R
H:x < 0
eps:R
H0:0 < eps

exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - -1) < eps
x:R
H:x < 0
eps:R
H0:0 < eps

0 < - x -> exists delta : posreal, forall h : R, h <> 0 -> Rabs h < delta -> Rabs ((Rabs (x + h) - Rabs x) / h - -1) < eps
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

Rabs ((Rabs (x + h) - Rabs x) / h - -1) < eps
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

Rabs ((Rabs (x + h) - - x) / h - -1) < eps
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

Rabs ((- (x + h) - - x) / h - -1) < eps
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

Rabs 0 < eps
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hlt:h < 0

x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hlt:h < 0

- 0 < - (x + h)
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hlt:h < 0

0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hlt:h < 0
0 < - h
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hlt:h < 0

0 < - h
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0
x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0

x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:h < {| pos := - x; cond_pos := H1 |}
Hgt:h >= 0

x + h < 0
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}
x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps
H1:0 < - x
h:R
H2:h <> 0
H3:Rabs h < {| pos := - x; cond_pos := H1 |}

x < 0
x:R
H:x < 0
eps:R
H0:0 < eps
0 < - x
x:R
H:x < 0
eps:R
H0:0 < eps

0 < - x
apply Ropp_0_gt_lt_contravar; apply H. Qed.
Rabsolu is derivable for all x <> 0

forall x : R, x <> 0 -> derivable_pt Rabs x

forall x : R, x <> 0 -> derivable_pt Rabs x
x:R
H:x <> 0

derivable_pt Rabs x
x:R
H:x <> 0
Hlt:x < 0

derivable_pt Rabs x
x:R
H:x <> 0
Heq:x = 0
derivable_pt Rabs x
x:R
H:x <> 0
Hgt:x > 0
derivable_pt Rabs x
x:R
H:x <> 0
Hlt:x < 0

derivable_pt_abs Rabs x (-1)
x:R
H:x <> 0
Heq:x = 0
derivable_pt Rabs x
x:R
H:x <> 0
Hgt:x > 0
derivable_pt Rabs x
x:R
H:x <> 0
Heq:x = 0

derivable_pt Rabs x
x:R
H:x <> 0
Hgt:x > 0
derivable_pt Rabs x
x:R
H:x <> 0
Hgt:x > 0

derivable_pt Rabs x
x:R
H:x <> 0
Hgt:x > 0

derivable_pt_abs Rabs x 1
apply (Rabs_derive_1 x Hgt). Qed.
Rabsolu is continuous for all x

continuity Rabs

continuity Rabs
x:R

continuity_pt Rabs x
x:R
H:x = 0

continuity_pt Rabs x
x:R
H:x <> 0
continuity_pt Rabs x
x:R
H:x = 0
eps:R
H0:eps > 0

eps > 0
x:R
H:x = 0
eps:R
H0:eps > 0
forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps -> Rabs (Rabs x0 - Rabs x) < eps
x:R
H:x <> 0
continuity_pt Rabs x
x:R
H:x = 0
eps:R
H0:eps > 0

forall x0 : R, D_x no_cond x x0 /\ Rabs (x0 - x) < eps -> Rabs (Rabs x0 - Rabs x) < eps
x:R
H:x <> 0
continuity_pt Rabs x
x:R
H:x <> 0

continuity_pt Rabs x
apply derivable_continuous_pt; apply (Rderivable_pt_abs x H). Qed.
Finite sums : Sum a_k x^k

forall (An : nat -> R) (N : nat), continuity (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)

forall (An : nat -> R) (N : nat), continuity (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)
An:nat -> R
N:nat
x:R

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
An:nat -> R
x:R

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x
An:nat -> R
x:R

continuity_pt (fun _ : R => An 0%nat * 1) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x
An:nat -> R
x:R

constant (fun _ : R => An 0%nat * 1)
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
continuity_pt (fun y : R => An (S N) * y ^ S N) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt (fun y : R => An (S N) * y ^ S N) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt (mult_real_fct (An (S N)) (fun y : R => y ^ S N)) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

continuity_pt (fun y : R => y ^ S N) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

derivable_pt (fun y : R => y ^ S N) x
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
N:nat
x:R
HrecN:continuity_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
reflexivity. Qed.

forall (An : nat -> R) (x : R) (N : nat), (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))

forall (An : nat -> R) (x : R) (N : nat), (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
An:nat -> R
x:R
H:(0 < 0)%nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred 0))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))

N = 0%nat \/ (0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 1) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1)) x (1 * An 1%nat * 1)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1)) x (1 * An 1%nat * 1)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1)) x (0 + An 1%nat * (1 * fct_cte 1 x + id x * 0))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fct_cte (An 0%nat * 1)) x 0
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
derivable_pt_lim (mult_real_fct (An 1%nat) (id * fct_cte 1)) x (An 1%nat * (1 * fct_cte 1 x + id x * 0))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (mult_real_fct (An 1%nat) (id * fct_cte 1)) x (An 1%nat * (1 * fct_cte 1 x + id x * 0))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (id * fct_cte 1) x (1 * fct_cte 1 x + id x * 0)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim id x 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
derivable_pt_lim (fct_cte 1) x 0
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

derivable_pt_lim (fct_cte 1) x 0
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

0 + An 1%nat * (1 * fct_cte 1 x + id x * 0) = 1 * An 1%nat * 1
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat
(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:N = 0%nat

(fct_cte (An 0%nat * 1) + mult_real_fct (An 1%nat) (id * fct_cte 1))%F = (fun y : R => An 0%nat * 1 + An 1%nat * (y * 1))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim ((fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) + (fun y : R => An (S N) * y ^ S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

(0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
derivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => An (S N) * y ^ S N) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (mult_real_fct (An (S N)) (fun y : R => y ^ S N)) x (An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => y ^ S N) x (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => y ^ S N) x (INR (S N) * x ^ N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

derivable_pt_lim (fun y : R => y ^ S N) x (INR (S N) * x ^ Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = N
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

Init.Nat.pred (S N) = N
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

mult_real_fct (An (S N)) (fun y : R => y ^ S N) = (fun y : R => An (S N) * y ^ S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

Init.Nat.pred (S N) = S (Init.Nat.pred N) -> sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
H2:Init.Nat.pred (S N) = S (Init.Nat.pred N)

sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (S (Init.Nat.pred N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
H2:Init.Nat.pred (S N) = S (Init.Nat.pred N)

sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) + INR (S (S (Init.Nat.pred N))) * An (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
H2:Init.Nat.pred (S N) = S (Init.Nat.pred N)

An (S N) * (INR (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)) = INR (S (S (Init.Nat.pred N))) * An (S (S (Init.Nat.pred N))) * x ^ S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
H2:Init.Nat.pred (S N) = S (Init.Nat.pred N)

An (S N) * (INR (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)) = INR (S (Init.Nat.pred (S N))) * An (S (Init.Nat.pred (S N))) * x ^ Init.Nat.pred (S N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
H2:Init.Nat.pred (S N) = S (Init.Nat.pred N)

An (S N) * (INR (S N) * x ^ N) = INR (S N) * An (S N) * x ^ N
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

Init.Nat.pred (S N) = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

N = S (Init.Nat.pred N)
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat
((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

((fun y : R => sum_f_R0 (fun k : nat => (An k * y ^ k)%R) N) + (fun y : R => (An (S N) * y ^ S N)%R))%F = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H0:N = 0%nat \/ (0 < N)%nat
H1:(0 < N)%nat

(fun x0 : R => sum_f_R0 (fun k : nat => An k * x0 ^ k) N + An (S N) * x0 ^ S N) = (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N))
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))

N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
H1:0%nat = N

0%nat = 0%nat \/ (0 < 0)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
m:nat
H1:(1 <= N)%nat
H0:m = N
N = 0%nat \/ (0 < N)%nat
An:nat -> R
x:R
N:nat
H:(0 < S N)%nat
HrecN:(0 < N)%nat -> derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N))
m:nat
H1:(1 <= N)%nat
H0:m = N

N = 0%nat \/ (0 < N)%nat
right; apply lt_le_trans with 1%nat; [ apply lt_O_Sn | assumption ]. Qed.

forall (An : nat -> R) (x : R) (N : nat), derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end

forall (An : nat -> R) (x : R) (N : nat), derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end
An:nat -> R
x:R
N:nat

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end
An:nat -> R
x:R

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x 0
An:nat -> R
x:R
N:nat
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R

derivable_pt_lim (fun _ : R => An 0%nat * 1) x 0
An:nat -> R
x:R
N:nat
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R

derivable_pt_lim (fun _ : R => An 0%nat) x 0
An:nat -> R
x:R
N:nat
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end
derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
An:nat -> R
x:R
N:nat
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end

derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
apply derivable_pt_lim_fs; apply lt_O_Sn. Qed.

forall (An : nat -> R) (N : nat) (x : R), derivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x

forall (An : nat -> R) (N : nat) (x : R), derivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
An:nat -> R
N:nat
x:R

derivable_pt (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x
An:nat -> R
N:nat
x:R

{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}
An:nat -> R
N:nat
x:R
H:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end

{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}
An:nat -> R
x:R
H:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x 0

{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) 0) x l}
An:nat -> R
N:nat
x:R
H:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end -> {l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}
{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x l}
An:nat -> R
N:nat
x:R
H:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x (sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred (S N)))
HrecN:derivable_pt_lim (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x match N with | 0%nat => 0 | S _ => sum_f_R0 (fun k : nat => INR (S k) * An (S k) * x ^ k) (Init.Nat.pred N) end -> {l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N) x l}

{l : R | derivable_pt_abs (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) (S N)) x l}
exists (sum_f_R0 (fun k:nat => INR (S k) * An (S k) * x ^ k) (pred (S N))); apply H. Qed.

forall (An : nat -> R) (N : nat), derivable (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)

forall (An : nat -> R) (N : nat), derivable (fun y : R => sum_f_R0 (fun k : nat => An k * y ^ k) N)
intros; unfold derivable; intro; apply derivable_pt_finite_sum. Qed.
Regularity of hyperbolic functions

forall x : R, derivable_pt_lim cosh x (sinh x)

forall x : R, derivable_pt_lim cosh x (sinh x)
x:R

derivable_pt_lim cosh x (sinh x)
x:R

derivable_pt_lim (fun x0 : R => (exp x0 + exp (- x0)) * / 2) x ((exp x - exp (- x)) * / 2)
x:R

derivable_pt_lim ((exp + comp exp (- id)) * fct_cte (/ 2)) x ((exp x - exp (- x)) * / 2)
x:R

derivable_pt_lim ((exp + comp exp (- id)) * fct_cte (/ 2)) x ((exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0)
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim (exp + comp exp (- id)) x (exp x + exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim exp x (exp x)
x:R
derivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim (- id) x (-1)
x:R
derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim id x (IPR 1)
x:R
derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
x:R

(exp x + exp (- x) * -1) * fct_cte (/ 2) x + (exp + comp exp (- id))%F x * 0 = (exp x - exp (- x)) * / 2
unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed.

forall x : R, derivable_pt_lim sinh x (cosh x)

forall x : R, derivable_pt_lim sinh x (cosh x)
x:R

derivable_pt_lim sinh x (cosh x)
x:R

derivable_pt_lim (fun x0 : R => (exp x0 - exp (- x0)) * / 2) x ((exp x + exp (- x)) * / 2)
x:R

derivable_pt_lim ((exp - comp exp (- id)) * fct_cte (/ 2)) x ((exp x + exp (- x)) * / 2)
x:R

derivable_pt_lim ((exp - comp exp (- id)) * fct_cte (/ 2)) x ((exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0)
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim (exp - comp exp (- id)) x (exp x - exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim exp x (exp x)
x:R
derivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim (comp exp (- id)) x (exp (- x) * -1)
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim (- id) x (-1)
x:R
derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim id x (IPR 1)
x:R
derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim exp ((- id)%F x) (exp (- x))
x:R
derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

derivable_pt_lim (fct_cte (/ 2)) x 0
x:R
(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
x:R

(exp x - exp (- x) * -1) * fct_cte (/ 2) x + (exp - comp exp (- id))%F x * 0 = (exp x + exp (- x)) * / 2
unfold plus_fct, mult_real_fct, comp, opp_fct, id, fct_cte; ring. Qed.

forall x : R, derivable_pt exp x

forall x : R, derivable_pt exp x
x:R

derivable_pt exp x
x:R

{l : R | derivable_pt_abs exp x l}
x:R

derivable_pt_abs exp x (exp x)
apply derivable_pt_lim_exp. Qed.

forall x : R, derivable_pt cosh x

forall x : R, derivable_pt cosh x
x:R

derivable_pt cosh x
x:R

{l : R | derivable_pt_abs cosh x l}
x:R

derivable_pt_abs cosh x (sinh x)
apply derivable_pt_lim_cosh. Qed.

forall x : R, derivable_pt sinh x

forall x : R, derivable_pt sinh x
x:R

derivable_pt sinh x
x:R

{l : R | derivable_pt_abs sinh x l}
x:R

derivable_pt_abs sinh x (cosh x)
apply derivable_pt_lim_sinh. Qed.

derivable exp

derivable exp
unfold derivable; apply derivable_pt_exp. Qed.

derivable cosh

derivable cosh
unfold derivable; apply derivable_pt_cosh. Qed.

derivable sinh

derivable sinh
unfold derivable; apply derivable_pt_sinh. Qed.

forall x : R, derive_pt exp x (derivable_pt_exp x) = exp x

forall x : R, derive_pt exp x (derivable_pt_exp x) = exp x
x:R

derivable_pt_lim exp x (exp x)
apply derivable_pt_lim_exp. Qed.

forall x : R, derive_pt cosh x (derivable_pt_cosh x) = sinh x

forall x : R, derive_pt cosh x (derivable_pt_cosh x) = sinh x
x:R

derivable_pt_lim cosh x (sinh x)
apply derivable_pt_lim_cosh. Qed.

forall x : R, derive_pt sinh x (derivable_pt_sinh x) = cosh x

forall x : R, derive_pt sinh x (derivable_pt_sinh x) = cosh x
x:R

derivable_pt_lim sinh x (cosh x)
apply derivable_pt_lim_sinh. Qed.

forall x y : R, x < y -> sinh x < sinh y
x, y:R
xy:x < y

forall c : R, x <= c <= y -> derivable_pt_lim sinh c (cosh c)
x, y:R
xy:x < y
c:R
Pc:sinh y - sinh x = cosh c * (y - x)
sinh x < sinh y
x, y:R
xy:x < y
c:R
Pc:sinh y - sinh x = cosh c * (y - x)

sinh x < sinh y
x, y:R
xy:x < y
c:R
Pc:sinh y - sinh x = cosh c * (y - x)

0 < sinh y + - sinh x
x, y:R
xy:x < y
c:R
Pc:sinh y + - sinh x = cosh c * (y - x)

0 < cosh c
x, y:R
xy:x < y
c:R
Pc:sinh y + - sinh x = cosh c * (y - x)
0 < y - x
x, y:R
xy:x < y
c:R
Pc:sinh y + - sinh x = cosh c * (y - x)

0 < exp c + exp (- c)
x, y:R
xy:x < y
c:R
Pc:sinh y + - sinh x = cosh c * (y - x)
0 < y - x
x, y:R
xy:x < y
c:R
Pc:sinh y + - sinh x = cosh c * (y - x)

0 < y - x
now apply Rlt_Rminus; assumption. Qed.